Lecture notes for Overview &lInstructions in Computer Architecture

Subject . Computer Architecture
Prepared by : Dr.J.Vinothkumar

1. Objectives:

Discuss the basic concepts and structure of computers.

Summarize the functional units of computer.

Analyze some of the design issues in terms of speed, technology, cost, performance.
Explain different types of logic gates.

Minimize the logic expressions.
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2. Prerequisite:
Digital System Design, Microprocessors & Microcontrollers

3. OUTCOMES:

v’ Understand the theory and architecture of central processing unit.
v" Analyze some of the design issues in terms of speed, technology, cost, performance

4 Design a simple CPU with applying the theory concepts.

4. Pre Test- MCQ type

1. Which of the following is not the form of registers?
a) Accumulator
b) General purpose register
¢) Special purpose register
d) Cache

2. The ALU makes use of to store the intermediate results.
a) Accumulators
b) Registers
c) Heap
d) Stack
3. The only language which the computer understands is
a) Assembly Language
b) Binary Language
c) BASIC
d) C Language
4. CPU does not perform the operation
A. data transfer
B. logic operation
C. arithmetic operation
D. all of above




5. The control unit controls other units by generating
a) Control signals
b) Timing signals
c¢) Transfer signals
d) Command Signals

5. OVERVIEW &INSTRUCTIONS

5.1 Introduction

8 GREATIDEAS:

1. Design for Moore’s Law

mooRrEe's LAW The one constant for computer designers is rapid change, which is driven largely by
Moore's Law. It states that integrated circuit resources double every 18-24 months. Moore's Law
resulted from a 1965 prediction of such growth in IC capacity made by Gordon Moore, one of the
foundersofintel. Ascomputerdesignscantakeyears,theresourcesavailable perchipcaneasilyd
double orquadruple between the startand finish ofthe project. Like a skeet shooter, computer
architects must anticipate where the technology will be when the design finishes rather than design
forwhereitstarts. We use an "up and to the right" Moore's Law graph to represent designing for rapid
change.

2. Use Abstraction to Simplify Design
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assTrRacTiON Both computer architects and programmers had to invent techniques to make
themselves more productive, for otherwise design time would lengthen as dramatically as resources
grew by Moore's Law. A major productivity technique for hardware and software is to use abstractions
to represent the design at different levels of representation; lower -level details are hidden to offer a
simplermodelathigherlevels.We'lluse the abstractpaintingiconto representthissecond greatidea.

3. Make the common case fast

Common case FAST Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is often simpler than the rare case and hence is often
easier to enhance. This common sense advice implies that you know what the common case is, which is
only possible with careful experimentation and measurement. We use a sports car as the icon for making
the common case fast, as the most common trip has one or two passengers, and it's surely easier to make
a fast sports car than a fast minivan.



4. Performance via parallelism

PARALLELISM Since the dawn of computing, computer architects have offered designs that get
more performance by performing operations in parallel. We'll see many examples of parallelism in this
book. We use multiple jet engines of a plane as our icon for parallel performance.

5. Performance via pipelining

rieecinineg A particular pattern of parallelism is so prevalent in computer architecture that it merits
its own name: pipelining. For example, before fire engines, a "bucket brigade" would respond to a fire,
which many cowboy movies show in response to a dastardly act by the villain. Th e townsfolk form a
human chain to carry a water source to fi re, as they could much more quickly move buckets up the
chain instead of individuals running back and forth. Our pipeline icon is a sequence of pipes, with each
section representing one stage of the pipeline.

6. Performance via prediction

Following the saying that it can be better to ask for forgiveness than to ask for permission, the next great
idea is prediction. In some cases it can be faster on average to guess and start working rather than wait
until you know for sure, assuming that the mechanism to recover from a misprediction is not too
Expensive and your prediction is relatively accurate. We use the fortune-teller's crystal ball as our
prediction icon.

7. Hierarchy of memories
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HIERARCHY Programmers want memory to be fast, large, and cheap, as memory speed often shapes
performance, capacity limits the size of problems that can be solved, and the cost of memory today is
often the majority of computer cost. Architects have found that they can address these conflicting
demands with a hierarchy of memories, with the fastest, smallest, and most expensive memory per bit at
the top of the hierarchy and the slowest, largest, and cheapest per bit at the bottom. Caches give the
programmer the illusion that main memory is nearly as fast as the top of the hierarchy and nearly as big
and cheap as the bottom of the hierarchy. We use a layered triangle icon to represent the memory
hierarchy. The shape indicates speed, cost, and size: the closer to the top, the faster and more expensive
per bit the memory; the wider the base of the layer, the bigger the memory.

8. Dependability via redundancy

DEPENDAEILITY computers not only need to be fast; they need to be dependable. Since any



physical device can fail, we make systems dependable by including redundant components that can take
over when a failure occurs and to help detect failures. We use the tractor-trailer as our icon, since the dual
tires on each side of its rear axles allow the truck to continue driving even when one tire fails.
(Presumably, the truck driver heads immediately to a repair facility so the fl at tire can be fixed, thereby
restoring redundancy!)

COMPONENTS OF COMPUTER SYSTEM

The five classic components of a computer are input, output, memory, data path, and control, with the last
two sometimes combined and called the processor. Figure 1.5 shows the standard organization of a
computer. The organization is independent of hardware technology: you can place every piece of every
computer, past and present, into one of these five categories.

Through the Looking Glass

The most fascinating I/O device is probably the graphics display. Most personal mobile devices use
liquid crystal displays (LCDs) to get a thin, low-power display. The LCD is not the source of light; instead, it
controls the transmission of light. A typical LCD includes rod-shaped molecules in a liquid that form a
twisting helix that bends light entering the display, from either a light source behind the display or less
oft en from reflected light. The rods straighten out when a current is applied and no longer bend the light.
Since the liquid crystal material is between two screens polarized at 90 degrees, the light cannot pass
through unless it is bent.

Today, most LCD displays use an active matrix that has a tiny transistor switch at each pixel to
precisely control current and make sharper images. A red-green-blue mask associated with each dot on
the display determines the intensity of the three color components in the final image; in a color active
matrix LCD, there are three transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can be represented as a
matrix of bits, called a bit map. Depending on the size of the screen and the resolution, the display matrix
in a typical tablet ranges in size from 1024 _ 768 to 2048 _1536. A color display might use 8 bits for each of
the three colors (red, blue, and green), for 24 bits per pixel, permitting millions of different colors to be
displayed.

Touchscreen

While PCs also use LCD displays, the tablets and smartphones of the Post PC era have replaced
the keyboard and mouse with touch sensitive displays, which has the wonderful user interface
advantage of users pointing directly what they are interested in rather than indirectly with a mouse.
While there are a variety of ways to implement a touch screen, many tablets today use capacitive sensing.
Since people are electrical conductors, if an insulator like glass is covered with a transparent conductor,
touching distorts the electrostatic field of the screen, which results in a change in capacitance. The is
technology can allow multiple touches simultaneously, which allows gestures that can lead to attractive
user interfaces.

Opening the Box

Figure 1.7 shows the contents of the Apple | Pad 2 tablet computer. Unsurprisingly, of the five
classic components of the computer, 1/O dominates this reading device. The list of I/O devices includes a
capacitive multitouch LCD display, front facing camera, rear facing camera, microphone, headphone jack,
speakers, accelerometer, gyroscope, Wi-Fi network, and Bluetooth network. The data path, control, and



memory are a tiny portion of the components. The small rectangles in Figure 1.8 contain the devices that
drive our advancing technology, called integrated circuits and nicknamed chips. The A5 package seen in
the middle of in Figure 1.8 contains two ARM processors that operate with a clock rate

Of 1 GHz. The processor is the active part of the computer, following the instructions of a program to the
letter. It adds numbers, tests numbers, signals I/O devices to activate, and so on. Occasionally, people call
the processor the CPU, for the more bureaucratic-sounding central processor unit.

Cache memory

It consists of a small, fast memory that acts as a buffer for the DRAM memory. (The nontechnical
definition of cache is a safe place for hiding things.) Cache is built using a different memory technology,
static random access memory (SRAM). SRAM is faster but less dense, and hence more expensive, than
DRAM (see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

A Safe Place for Data

Thus far, we have seen how to input data, compute using the data, and display data. If we were to lose
power to the computer, however, everything would be lost because the memory inside the computer is
volatile—that is, when it loses power, it forgets. In contrast, a DVD disk doesn’t forget the movie when you
turn off the power to the DVD player, and is thus a nonvolatile memory technology.

Communicating with Other Computers

We've explained how we can input, compute, display, and save data, but there is still one missing item
found in today’s computers: computer networks. Just as the processor shown in Figure 1.5 is connected to
memory and I/O devices, networks interconnect whole computers, allowing computer users to extend the
power of computing by including communication. Networks have become so popular that they are the
backbone of current computer systems; a new personal mobile device or server without a network
interface would be ridiculed. Networked computers have several major advantages:

Communication: Information is exchanged between computers at high speeds.

Resource sharing: Rather than each computer having its own I/O devices, computers on the network can
share I/O devices.

Nonlocal access: By connecting computers over long distances, users need not be near the computer
they are using.

Networks vary in length and performance, with the cost of communication increasing according to
both the speed of communication and the distance that information travels. Perhaps the most popular
type of network is Ethernet. It can be up to a kilometer long and transfer at up to 40 gigabits per second.

Technologies for Building Processors
and Memory

Processors and memory have improved at an incredible rate, because computer designers have
long embraced the latest in electronic technology to try to win the race to design a better computer. used
over time, with an estimate of the relative performance per unit cost for each technology. Since this
technology shapes what computers will be able to do and how quickly they will evolve, we believe all
computer professionals should be familiar with the basics of integrated circuits.
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A is simply an on/off switch controlled by electricity. The integrated circuit (IC)

combined dozens to hundreds of transistors into a single chip. When Gordon Moore predicted the
continuous doubling of resources, he was predicting the growth rate of the number of transistors per chip.
To describe the tremendous increase in the number of transistors from hundreds to millions, the adjective
very large scale is added to the term, creating the abbreviation VLS/, for

This rate of increasing integration has been remarkably stable. Figure 1.11 shows the growth in
DRAM capacity since 1977. For decades, the industry has consistently quadrupled capacity every 3 years,
resulting in an increase in excess of 16,000 times! To understand how manufacture integrated circuits, we
start at the beginning. The manufacture of a chip begins with , a substance found in sand. Because
silicon does not conduct electricity well, it is called a . With a special chemical process, it is
possible to add materials to silicon that allow tiny areas to transform into one of three devices: % excellent
conductors of electricity (using either microscopic copper or aluminum wire) been used over time, with an
estimate of the relative performance per unit cost for each technology. Since this technology shapes what
computers will be able to do and how quickly they will evolve, we believe all computer professionals
should be familiar with the basics of integrated circuits.

A is simply an on/off switch controlled by electricity. The integrated circuit (IC)
combined dozens to hundreds of transistors into a single chip. When Gordon Moore predicted the
continuous doubling of resources, he was predicting the growth rate of the number of transistors per
chip. To describe the tremendous increase in the number of transistors from hundreds to millions, the
adjective very large scale is added to the term, creating the abbreviation VLSI, for

. This rate of increasing integration has been remarkably stable. Figure 1.11 shows
The growth in DRAM capacity since 1977. For decades, the industry has consistently quadrupled capacity
every 3 years, resulting in an increase in excess of 16,000 times! To understand how manufacture
integrated circuits, we start at the beginning. The manufacture of a chip begins with , a substance
found in sand. Because silicon does not conduct electricity well, it is called a . With a special
chemical process, it is possible to add materials to silicon that allow tiny areas to transform into one of
three devices:

e Excellent conductors of electricity (using either microscopic copper or
e Excellent insulators from electricity (like plastic sheathing or glass)
e Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combinations of
conductors, insulators, and switches manufactured in a single small package. Aluminum wire)
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FIGURE 1.12 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). These patterned wafers are
then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies (see
Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.)
‘The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages and
tested one more time before shipping the packaged parts to customers. One bad packaged part was found
in this final test.

Elaboration: The cost of an integrated circuit can be expressed in three simple
equations:
Cost per wafer

Cost per die = -
Dies per wafer X yield
Dies per wafer = M
Die area

1

Yield - Gl
(1 + (Defects per area X Die area/2))

The first equation is straightforward to derive. The second is an approximation,
since it does not subtract the area near the border of the round wafer that cannot
accommodate the rectangular dies (see Figure 1.13). The final equation is based on
empirical observations of yields at integrated circuit factories, with the exponent related
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are
generally not linear in the die area.

Performance
Defining Performance

When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 1.14
lists some typical passenger airplanes, together with their cruising speed, range,
and capacity. If we wanted to know which of the planes in this table had the best
performance, we would first need to define performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed was the Concorde (retired from service in 2003), the plane with the longest
range is the DC-8, and the plane with the largest capacity is the 747.

Passenger | Cruising range | Cruising speed | Passenger throughput
Airplane capacity (miles) (m.p.h.) (passengers x m.p.h.)
4630 610

Boeing 777 375 228,750
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde | 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. The last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeoff and landing times).



Throughput and Response Time
Do the following changes to a computer system increase throughput, decrease
response time, or both?
1. Replacing the processor in a computer with a faster version
2. Adding additional processors to a system that uses multiple processors for separate tasks—for
example, searching the web decreasing response time almost always improves throughput. Hence, in
case
1, both response time and throughput are improved. In case 2, no one task gets work done faster, so
only throughput increases. If, however, the demand for processing in the second case was almost
As large as the throughput, the system might force requests to queue up. In this case, increasing the
throughput could also improve response time, since it would reduce the waiting time in the queue.
Thus, in many real computer systems, changing either execution time or throughput oft en affects the
other. In discussing the performance of computers, we will be primarily concerned with response time
for the first few chapters. To maximize performance, we want to minimize response time or execution
time for some task. Thus, we can relate performance and execution time for a computer X:

1

Performancey = ————
Execution timey

This means that for two computers X and Y, if the performance of X is greater than
the performance of Y, we have

Performancey > Performancey

1 ) 1
- > - .
Execution timey ~ Execution timey

Execution timey > Execution timey

That is, the execution time on Y is longer than that on X, if X is faster than Y.
Relatlve Performance

C d d i Ci d d
If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is n times as fast as B if

Performance,  Execution timey
Performance,  Execution time,,

Thus the performance ratio is
1
1

wn

I
-
wn

(=)

and A is therefore 1.5 times as fast as B.

In the above example, we could also say that computer B is 1.5 times slower than
computer A, since

Performance , g
Performance, -
means that
Performance :
————A = Performancey

1.5



The Power Wall

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 30 years. Both clock rate and power increased rapidly for
decades, and then flattened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.
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FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler
pipeline with lower clock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.

The dominant technology for integrated circuits is called CMOS (complementary metal oxide
semiconductor). For CMOS, the primary source of energy consumption is so-called dynamic energy— that
is, energy that is consumed when transistors switch states from 0 to 1 and vice versa. The dynamic energy
depends on the capacitive loading of each transistor and the voltage applied:

Energy o Capacitive load % Voltage

This equation is the energy of a pulse during the logic transition of 0 — 1 — 0 or
1 — 0 — 1. The energy of a single transition is then

Energy o 1/2 X Capacitive load X Voltagell

The power required per transistor is just the product of energy of a transition and
the frequency of transitions:

Power o 1/2 X Capacitive load X Voltage® X Frequency switched

Frequency switched is a function of the clock rate. The capacitive load per transistor is a function
of both the number of transistors connected to an output (called the fan-out) and the technology, which
determines the capacitance of both wires and transistors.

The Sea Change: The Switch from Uniprocessors to Multiprocessors

The power limit has forced a dramatic change in the design of microprocessors. Figure 1.17 shows
the improvement in response time of programs for desktop microprocessors over time. Since 2002, the

rate has slowed from a factor of 1.5 per year to a factor of 1.2 per year.

Rather than continuing to decrease the response time of a single program running on the single
processor, as of 2006 all desktop and server companies are shipping microprocessors with multiple
processors per chip, where the benefit is oft en more on throughput than on response time. To reduce
confusion between the words processor and microprocessor, companies refer to processors as “cores,”
and such microprocessors are generically called multicore microprocessors.



Hence, a “quad core” microprocessor is a chip that contains four processors or four cores. In the
past, programmers could rely on innovations in hardware, architecture, and compilers to double
performance of their programs every 18 months without having to change a line of code. Today, for
programmers to get significant improvement in response time, they need to rewrite their programs to
take advantage of multiple processors. Moreover, to get the historic benefit of running faster on new
microprocessors, programmers will have to continue to improve performance of their code as the number
of cores increases.

To reinforce how the software and hardware systems work hand in hand, we use a special section,
Hardware/Software Interface, throughout the book, with the first one appearing below. These elements
summarize important insights at this critical interface.

IParallelism has always been critical to performance in computing, but it was HMHardware /

often hidden. Chapter 4 will explain pipelining, an elegant technique that runs Software

programs faster by overlapping the execution of instructions. This is one example of

instruction-level parallelism, where the parallel nature of the hardware is abstracted Interface

away so the programmer and compiler can think of the hardware as executing

instructions sequentially. ‘ -
Forcing programmers to be aware of the parallel hardware and to explicitly

rewrite their programs to be parallel had been the “third rail” of computer .

architecture, for companies in the past that depended on such a change in behavior

failed (see [ Section 6.15). From this historical perspective, it’s startling that the .'

whole IT industry has bet its future that programmers will finally successfully

switch to explicitly parallel programming. PIPELINING

100,

Intel Xeon 4 cores 3.6 GHz (Boost 10 4.0)
Inted Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)

Intel Xeon € cores, 3.3 GHz (boost 10 3.6 GHz) 34,967
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz) 1909
Intel Core i7 Extrame 4 cores 3.2 GHz (boost 1o 3.5 GHz) R

intel Core Duo Extreme 2 cores, 3.0 GHz

Intel DBSOEMVR motherboard (3.08 GHz, Pentium 4 with Hypes
IBM Powers, 1.3 GHz @7°

Intel VC820 motherboard, 1.0 GHz Pentium Il processor,
Professional Workstation XP1000, €67 MHz 212644 s
Digital A 8400 /575, 575 MHz 21264

:

22%/year

Peromance (vs. VAX-11/780)

T T T T T T T T T T T T T T T T T
1578 1880 1982 1984 1386 1888 1890 1902 1994 1896 1996 2000 2002 2004 2006 2008 2010 2012 2014

FIGURE 1.17 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.10). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. The higher annual performance improvement of 52% since the mid-1980s meant performance was about a factor of seven
higher in 2002 than it would have been had it stayed at 25%. Since 2002, the limits of power, available instruction-level parallelism, and long
memory latency have slowed uniprocessor performance recently, to about 22% per year.



Operations of the Computer Hardware
Every computer must be able to perform arithmetic. The MIPS assembly language notation add a,
b, cinstructs a computer to add the two variables b and c and to put their sum in a.

This notation is rigid in that each MIPS arithmetic instruction performs only one operation and
must always have exactly three variables. For example, suppose we want to place the sum of four
variables b, c, d, and e into variable a. (In this section we are being deliberately vague about what a
“variable” is; in the next section we’ll explain in detail.)

The following sequence of instructions adds the four variables:
add a, b, c # The sum of b and c is placed in a
add a, a, d # The sum of b, ¢, and d is now in a
add a,a,e# Thesumof b, c,d, and eis now in a
Thus, it takes three instructions to sum the four variables. The words to the right of the sharp

symbol (#) on each line above are comments for the human reader, so the computer ignores them.

MIPS ASSEMBLY LANGUAGE CODE

| catogory | instruction | _ Example | Meaning |  Comments

add $s1,$52,$s53 [$s1 =852 + $s3 Three register operands
Arithmetic subtract sub $51,$52,$s3 |85l =$52-$53 Three register operands
add immediate addi $s1,$52,20 $§51=%52+20 Used to add constants
load word Tw $s51,20(%$s2) $s1 =Memory[$s2 + 20] Word from memory to register
store word sw $s51,20($s2) Memory[$s2 + 20] =351 Word from register to memory
load half 1h $s51,20(%s2) |$sl=Memory[$s2+ 20] Halfword memory to register
load half unsigned |1nhu $51,20($52) |$s1=Memory[$s2 + 20] Halfword memory to register
store half sh $s51,20(3%s2) [Memory[$s2+20] =$s1 Halfword register to memory
?rg;z o |1oadbyte b $51,20($s2) [$s1=Memory[ss2+20] Byte from memory to register
load byte unsigned | Tbu $51,20(%s2) [ $sl =Memory[$s2 + 20] Byte from memory to register
store byte sb $51,20(%$s2) |Memory[$s2+20] =3$s1 Byte from register to memory
load linked word 11 $s51,20(%s2) |S8sl=Memory[$s?Z+ 20] Load word as 1st half of atomic swap
store condition. word| sc  $51,20(%s2) |Memory[ss2+20]=8$s1;551=0 or 1 | Store word as 2nd half of atomic swap
load upper immed. | Tui $s1,20 $s1=20*2%" Loads constant in upper 16 bits
and and $s51,%$52,$s53[8sl =952 &3$s3 Three reg. operands; bit-by-bit AND
or or $51,952,953[8s1 =952 | %53 Three reg. operands; bit-by-bit OR
nor nor $s51,$52,$53|8sl=~($52] $53) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s51,$s52,20 [$s1=%52&20 Bit-by-bit AND reg with constant
or immediate ori $s51,$52,20 |$s1=$s2]20 Bit-by-bit OR reg with constant
shift left logical s11  $s51,$52,10 [$s1=8s2<<10 Shift left by constant
shift right logical sr1 $s51,%$s2,10 [($s1=%s2>>10 Shift right by constant
branch on equal beq $s1,$s52,25 |if($sl==4s52)goto Equal test; PC-relative branch
PC +4 + 100
branchonnot equal | bne $s1,%$52,25 |[if($sl!= $52) goto Not equal test; PC-relative
PC+4 +100
set on less than STt $51,%$52,%53 |if($s2 <$s3) $s1=1; Compare less than; for beq, bne
Conditional else $51=0
branch set on less than sltu $51,3$52,5s53 |if($s2 < §s3) $s1=1; Compare less than unsigned
unsigned else $51=0
set less than sTti $51,$52,20 |if($s2<20)$s1=1 Compare less than constant
immediate else $51=0
set less than sTtiu $s51,8s2,20 [if($s2<20)%s51=1 Compare less than constant
immediate unsigned else $51=0 unsigned




Complling Two C Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, ¢, d, and e. Since
Java evolved from C, this example and the next few work for either high-level
programming language:

(o]

a=>b +
d=a

m

The translation from C to MIPS assembly language instructions is performed
by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result
in one destination operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

add a,

sub d, a,

m o

Operands of the Computer Hardware

One major difference between the variables of a programming language and registers is the
limited number of registers, typically 32 on current computers, like MIPS. (See the history
of the number of registers.) Thus, continuing in our top-down, stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restriction that the three
operands of MIPS arithmetic instructions must each be chosen from one of the 32 32-bit registers. The
reason for the limit of 32 registers may be found in the second of our three underlying design principles of
hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because it takes
electronic signals longer when they must travel farther. Guidelines such as “smaller is faster” are not
absolutes; 31 registers may not be faster than 32. Yet, the truth behind such observations causes
computer designers to take them seriously. In this case, the designer must balance the craving of programs
for more registers with the designer’s desire to keep the clock cycle fast. Another reason for not using
more than 32 is the number of bits it would take in the instruction format, as Section 2.5 demonstrates.

Complling a C Assignment Using Reglsters

It is the compiler’s job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

f=10g+h) - (G +j);

The variables f, g, h, 1, and J are assigned to the registers $s0, $s1, $s2,
$53, and $s4, respectively. What is the compiled MIPS code?



The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary
registers, $£ 0 and $ t 1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h
add $tl1,$s3,$s4 # register $tl contains i + ]
sub $s0,$t0,8tl # f gets $t0 - $t1, which is (g + h)-(i + j)

Memory Operands

Recall the five components of a computer introduced in Chapter 1 and repeated
on page 61. The processor can keep only a small amount of data in registers, but
computer memory contains billions of data elements. Hence, data structures
(arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus, MIPS must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions.
To access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at 0. For example, in Figure 2.2, the address of the third
data element is 2, and the value of Memory [2] is 10.

3 100
2 10
1 101
0 1

Address Data

Processor Memory

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these elements
were words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word
representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses.

Logical Operations

Although the first computers operated on full words, it soon became clear that it was useful to
operate on fields of bits within a word or even on individual bits. Examining characters within a word, each
of which is stored as 8 bits, is one example of such an operation (see Section 2.9). It follows that
operations were added to programming languages and instruction set architectures to simplify, among
other things, the packing and unpacking of bits into words. These instructions are called logical operations.
Figure 2.8 shows logical operations in C, Java, and MIPS.

<< L

Shift left s11
Shift right > >>> sril
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT -~ nor|

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS
implements NOT using a NOR with one operand being zero.



The first class of such operations is called shift s. They move all the bits in a word to the left or right,
filling the emptied bits with Os. For example, if register $s0 contained

0000 0000 0000 0000 0000 0000 0000 1001two = 9ten
And the instruction to shift left by 4 was executed, the new value would be:

0000 0000 0000 0000 0000 0000 1001 0000two = 144ten

The dual of a shift left is a shift right. The actual name of the two MIPS shift
instructions are called shift left logical (s11) and shift right logical (sr1). The
following instruction performs the operation above, assuming that the original
value was in register $50 and the result should go in register $t 2:

s11 $t2,.%$s0,4 # reg $t2 = reg $s0 << 4 bits
We delayed explaining the shamt field in the R-format. Used in shift instructions,
it stands for shift amount. Hence, the machine language version of the instruction
above is

op rs rt rd shamt funct

| 0 | 0 | 16 | 10 < I 0

Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make
decisions. Based on the input data and the values created during computation,
different instructions execute. Decision making is commonly represented in
programming languages using the if statement, sometimes combined with go to
statements and labels. MIPS assembly language includes two decision-making
instructions, similar to an if statement with a go fo. The first instruction is

beq registerl, register?, L1

This instruction means go to the statement labeled L1 if the valuein registerl
equals the value in registerZ2. The mnemonic beq stands for branch if equal.
The second instruction is

bne registerl, register2, L1

It means go to the statement labeled L1 if the valuein register]l does not equal
the valuein register?2. The mnemonic bne stands for branch if not equal. These
two instructions are traditionally called conditional branches.

Complling If-then-else Into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the five
variables T through j correspond to the five registers $ 50 through $ 54, what
is the compiled MIPS code for this C if statement?

if (i=j) f=g+h;else f=g - h;



Figure 2.9 shows a flowchart of what the MIPS code should do. The first
expression compares for equality, so it would seem that we would want the
branch if registers are equal instruction (beq). In general, the code will be
more efficient if we test for the opposite condition to branch over the code that
performs the subsequent then part of the if (the label E 1 se is defined below)
and so we use the branch if registers are not equal instruction (bne):

bne $s3,$s4,Else # go to Else if i = j

The next assignment statement performs a single operation, and if all the
operands are allocated to registers, it is just one instruction:

add $s0,$s1,$s2 # f=g + h (skipped if i = j)
We now need to go to the end of the if statement. This example introduces
another kind of branch, often called an unconditional branch. This instruction
says that the processor always follows the branch. To distinguish between
conditional and unconditional branches, the MIPS name for this type of
instruction is jump, abbreviated as j (the label Exi t is defined below).

j Exit # go to Exit
The assignment statement in the else portion of the if statement can again be
compiled into a single instruction. We just need to append the label E1se to
this instruction. We also show the label Ex it that is after this instruction,
showing the end of the if-then-else compiled code:

Else:sub $s50,$s51,$s2 # f =g - h (skipped if 1 = jJ)
Exit:

Else:

f=g+h =g-h

Exit: \

FIGURE 2.9 Illustration of the options in the if statement above. The left box corresponds to
the then part of the if statement, and the right box corresponds to the else part.

Loops

Decisions are important both for choosing between two alternatives—found in if
statements—and for iterating a computation—found in loops. The same assembly
instructions are the building blocks for both cases.



Compliing a while Loop In C

Here is a traditional loop in C:

while (savel[i] == k)
3 4= 1=

Assume that 1 and k correspond to registers $53 and $s5 and the base of the
array save isin $s6. What is the MIPS assembly code corresponding to this
C segment?

The first step is to load save[ 1 ] into a temporary register. Before we can load
save[i] into a temporary register, we need to have its address. Before we
can add 1 to the base of array save to form the address, we must multiply the
index i by 4 due to the byte addressing problem. Fortunately, we can use shift
left logical, since shifting left by 2 bits multiplies by 2* or 4 (see page 88 in the
prior section). We need to add the label Loop to it so that we can branch back
to that instruction at the end of the loop:

Loop: s11 $t1,$s3,2 # Temp reg $tl =37 * 4
To get the address of save[ i ], we need toadd $t 1 and the base of save in $s6:

add $tl1,%$tl,$s6 # $t1 = address of save[i]

Now we can use that address to load save[ 1] into a temporary register:

Tw $t0,0(3%t1) # Temp reg $t0 = save[i]
The next instruction performs the loop test, exitingif save[i] = k:

bne $t0,%$s5, Exit # go to Exit if save[i] = k

The next instruction adds 1 to i:

addi $s3,$s3,1 #i=1+1

The end of the loop branches back to the while test at the top of the loop. We
just add the Ex 1t label after it, and we're done:

] Loop # go to Loop
Exit:

(See the exercises for an optimization of this sequence.)

Case/Switch Statement

Most programming languages have a case or swifch statement that allows the
programmer to select one of many alternatives depending on a single value. The
simplest way to implement switch is via a sequence of conditional tests, turning the
switch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of
addresses of alternative instruction sequences, called a jump address table or
jump table, and the program needs only to index into the table and then jump to
the appropriate sequence. The jump table is then just an array of words containing
addresses that correspond to labels in the code. The program loads the appropriate
entry from the jump table into a register. It then needs to jump using the address
in the register. To support such situations, computers like MIPS include a jump
register instruction (j r), meaning an unconditional jump to the address specified
in a register. Then it jumps to the proper address using this instruction. We'll see an
even more popular use of jr in the next section.



MIPS Addressing for 32-bit Immediate and Addresses

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there are times where
it would be convenient to have a 32-bit constant or 32-bit address. This section starts with the general
solution for large constants, and then shows the optimizations for instruction addresses used in branches
and jumps.

32-Bit Immediate Operands

Although constants are frequently short and fi t into the 16-bit field, sometimes they are bigger.
The MIPS instruction set includes the instruction load upper immediate (lui) specifically to set the upper
16 bits of a constant in a register, allowing a subsequent instruction to specify the lower 16 bits of the
constant. Figure 2.17 shows the operation of lui.

The machine language versionof Tui $t0, 255 # $t0 is register 8:
| 001111 00000 01000 | 0000 0000 1111 1111 |

Contents of register $t0 after executing Tui $t0, 255: rr=
| 0000 0000 1111 1111 | 0000 0000 0000 0000 |

FIGURE 2.17 The effect of the 1ui instruction. The instruction 1ui transfers the 16-bit immediate constant field value into the
leftmost 16 bits of the register, filling the lower 16 bits with 0s.

Loading a 32-BIt Constant
What is the MIPS assembly code to load this 32-bit constant into register $s07?

0000 0000 0011 1101 0000 1001 0COO 0OCOO

First, we would load the upper 16 bits, which is 61 in decimal, using Tui:
lTui $s0, 61 ## 61 decimal = 0000 0000 0011 1101 binary
The value of register $s0 afterward is
0000 0000 0011 1101 0000 0000 0000 000O
The next step is to insert the lower 16 bits, whose decimal value is 2304:
ori $s0. $s0, 2304 # 2304 decimal = 0000 1001 0000 0000
The final value in register $s 0 is the desired value:

0000 0000 0011 1101 0OOO 1001 0000 ©OOO



Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the final MIPS
instruction format, called the J-type, which consists of 6 bits for the operation field
and the rest of the bits for the address field. Thus,

j 10000 # go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we will

see):

| 2 | 10000 |
6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 1UUUU.
Unlike the jump instruction, the conditional branch instruction must specify
two operands in addition to the branch address. Thus,

bne $s0,$s1.Exit # go to Exit if $s0 = $sl

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 | 17 | Exit
6 bits 5 bits 5 bits 16 bits

If addresses of the program had to fit in this 16-bit field, it would mean that no
program could be bigger than 2'¢, which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added
to the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 2% and still be able to use
conditional branches, solving the branch address size problem. Then the question
is, which register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a
nearby instruction. For example, about half of all conditional branches in SPEC
benchmarks go to locations less than 16 instructions away. Since the program
counter (PC) contains the address of the current instruction, we can branch within
+2' words of the current instruction if we use the PC as the register to be added
to the address. Almost all loops and if statements are much smaller than 2" words,
so the PC is the ideal choice.

This form of branch addressing is called PC-relative addressing. As we shall see
in Chapter 4, it is convenient for the hardware to increment the PC early to point
to the next instruction. Hence, the MIPS address is actually relative to the address
of the following instruction (PC + 4) as opposed to the current instruction (PC).
It is yet another example of making the common case fast, which in this case is
addressing nearby instructions.



Showing Branch Offset In Machine Language

The while loop on pages 92-93 was compiled into this MIPS assembler code:

Loop:s11 $t1,%$s3,2 # Temp reg $t1 = 4 * 3
add $tl1,$tl,$s6 # $t1 = address of save[i]
Tw $t0,0($t1) # Temp reg $t0 = save[i]
bne $t0,%$s5, Exit # go to Exit if save[i] = k
addi $s3,%$s3,1 Fi=13+1
b Loop # go to Loop

Exit:

If we assume we place the loop starting at location 80000 in memory, what is
the MIPS machine code for this loop?

The assembled instructions and their addresses are:

80000 0 0 19 9 2 0
80004 0 9 22 9 0 32
80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 20000

80024

MIPS Addressing Mode Summary

Multiple forms of addressing are generically called . Figure 2.18 shows how
operands are identified for each addressing mode. The MIPS addressing modes are the
following:

1. Immediate addressing, where the operand is a constant within the instruction itself

2. Register addressing, where the operand is a register

3. Base or displacement addressing, where the operand is at the memory location whose address
is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a constant in the
instruction

5. Pseudo direct addressing, where the jump address is the 26 bits of the instruction concatenated
with the upper bits of the PC



1. Immediate addressing
op|rs | rt Immediate

2. Register addressing

op|rs | rt|rd|...funct Registers

I Register

3. Base addressing

op|rs |t Address Memory

Word

Reqgister
[

4. PC-relative addressing

op|rs|rt Address Memory

5. Pseudodirect addressing

op Address Memory
PC @— Word
[

FIGURE 2.18 lllustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of
load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself.
Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the
PC and mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Note that a
single operation can use more than one addressing mode. Add, for example, uses both immediate (addi)
and register (add) addressing.
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. Post MCQ Test

is the branch logic that provides decision-making capabilities in the control
unit
A. Unconditional transfer
B. Controlled transfer
C. Conditional transfer
D. None of these

Which of the following is used to hold running program instructions?
a) Primary Storage

b) Virtual Storage

c) Internal Storage

d) Minor Devices

When a subroutine is called, the address of the instruction following the
CALL instructions stored in/on the

a. stack pointer

b. accumulator

C. program counter

d. stack

When information is stored into the memory, it is known as

a. Read operation

b. Write operation

c. Polling

d. Data mining



Lecture notes for Arithmetic for Computers in Computer Architecture

1.

Objectives:
v' Explain different types of binary codes and its conversions.
v' Define different number systems, binary addition and subtraction,

complement representation and operations with this representation.
v" Understand concepts of register transfer logic
v" Summarize the types of micro operations.
v Design logic circuits for different micro operations.

. OUTCOMES:

v' Define different number systems, binary addition and subtraction,
complement representation and operations with this representation
v Use appropriate tools to design verify and test the CPU architecture

. Pre Test- MCQ type

The sign followed by the string of digits is called as
a) Significant

b) Determinant

c) Mantissa

d) Exponent

. The 32 bit representation of the decimal number is called as

a) Double-precision

b) Single-precision

c) Extended format

d) None of the mentioned

The result that is smaller than the smallest number obtained is referred to as

a) NaN

b) Underflow

c) Smallest

d) Mantissa

Which of the following is used for binary multiplication?
a) Restoring Multiplication

b) Booth’s Algorithm

c) Pascal’s Rule

d) Digit-by-digit multiplication

If Booth’s Multiplication is performed on the numbers 22*3, then what is 3
referred to as

a) accumulator

b) multiplicand

C) quotient

d) multiplier

2’s

2’s



5. ARITHMETIC OPERATIONS

Introduction

Computer words are composed of bits; thus, words can be represented as binary
numbers. Chapter 2 shows that integers can be represented either in decimal or
binary form, but what about the other numbers that commonly occur? For example:

m What about fractions and other real numbers?
m Whathappens ifan operation creates anumber bigger than can be represented?

® And underlying these questions is a mystery: How does hardware really
multiply or divide numbers?

'The goal of this chapter is to unravel these mysteries including representation of
real numbers, arithmetic algorithms, hardware that follows these algorithms, and
the implications of all this for instruction sets. These insights may explain quirks
that you have already encountered with computers. Moreover, we show how to use
this knowledge to make arithmetic-intensive programs go much faster.

Addition and Subtraction

Addition is just what you would expect in computers. Digits are added bit by bit
from right to left, with carries passed to the next digit to the left, just as you would
do by hand. Subtraction uses addition: the appropriate operand is simply negated
before being added.

Binary Addition and Subtraction

Let’s try adding 6,

ten

to 7, in binary and then subtracting 6, from 7, in binary.

0000 0000 0000 0000 0000 0000 0000 0111y, = 74
+ 0000 0000 0000 0000 0000 0000 0000 01104, = 6ty
- 0000 0000 0000 0000 0000 0000 0000 1101, = 134

The 4 bits to the right have all the action; Figure 3.1 shows the sums and
carries. The carries are shown in parentheses, with the arrows showing how
they are passed.

Subtracting 6, from 7, can be done directly:
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FIGURE 3.1 Binary addition, showing carries from right to left. The rightmost bit adds 1
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation
for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out of 1. The

third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bitis 1 +
0 + 0, yielding a 1 sum and no carry.

0000 0000 0000 0000 0000 0000 0000 01114y, = 7ten
: 0000 0000 0000 0000 0000 0000 0000 01104y, = 6ten
B 0000 0000 0000 0000 0000 0000 0000 0001, = lig

or via addition using the two's complement representation of —6:

0000 0000 0000 0000 0000 0000 0000 Olllyyy = 7ten
+ 1111 1111 1111 1111 1111 1111 1111 10104y, = -bten
= 0000 0000 0000 000C 0000 0000 0000 00014y = lten
-
A+B
A+B <0 <0 =0
A-B =20 <0 <0
A-B <0 =20 20

FIGURE 3.2 Overflow conditions for addition and subtraction.

We have just seen how to detect overflow for two's complement numbers in a
computer. What about overflow with unsigned integers? Unsigned integers are
commonly used for memory addresses where overflows are ignored.

The computer designer must therefore provide a way to ignore overflow in

some cases and to recognize it in others. The MIPS solution is to have two kinds of
arithmetic instructions to recognize the two choices:

m Add(add), add immediate (add1), and subtract (sub) cause exceptions on
overflow.

®m Add unsigned (addu), add immediate unsigned (addiu), and subtract
unsigned (subu) do nof cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate the
unsigned versions of the arithmetic instructions addu, addiu, and subu, no
matter what the type of the variables. The MIPS Fortran compilers, however, pick
the appropriate arithmetic instructions, depending on the type of the operands.

Appendix B describes the hardware that performs addition and subtraction,
which is called an Arithmetic Logic Unit or ALU.



Multiplication

Now that we have completed the explanation of addition and subtraction, we are
ready to build the more vexing operation of multiplication.

First, let’s review the multiplication of decimal numbers in longhand to remind
ourselves of the steps of multiplication and the names of the operands. For reasons
that will become clear shortly, we limit this decimal example to using only the
digits 0 and 1. Multiplying 1000, by 1001__:

Multiplicand 1000;.,
Multiplier X 1001,.,

1000
0000
0000
1000

Product 1001000,

The first operand is called the multiplicand and the second the multiplier.
The final result is called the product. As you may recall, the algorithm learned in
grammar school is to take the digits of the multiplier one at a time from right to
left, multiplying the multiplicand by the single digit of the multiplier, and shifting
the intermediate product one digit to the left of the earlier intermediate products.

In this example, we restricted the decimal digits to 0 and 1. With only two
choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 X multiplicand) in the proper place
if the multiplier digitisa 1, or

2. Place 0 (0 X multiplicand) in the proper place if the digit is 0.

 —
Multiplicand
Shift left |-—
64 bits
\ \
&g i
) Multiplier
64-bit ALU Shift right |
32 bits
i
Product , Control test
Write
64 bits

FIGURE 3.3 First version of the multiplication hardware. The Multiplicand register, ALU,
and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. (Appendix B
describes ALUs.) The 32-bit multiplicand starts in the right half of the Multiplicand register and is shifted left
1 bit on each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts with
the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier registers and when
to write new values into the Product register.



Multiplicand

32 bits
A y
b4 /
32-bitALU

y —

Progiuct Shift rig.ht Control
Write test

64 bits

FIGURE 3.5 Refined version of the multiplication hardware. Compare with the first version in
Figure 3.3. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product
register left at 64 bits. Now the product is shifted right. The separate Multiplier register also disappeared. The
multiplier is placed instead in the right half of the Product register. These changes are highlighted in color.
(The Product register should really be 65 bits to hold the carry out of the adder, but it’s shown here as 64 bits
to highlight the evolution from Figure 3.3.)

Division

The reciprocal operation of multiply is divide, an operation that is even less frequent
and even more quirky. It even offers the opportunity to perform a mathematically
invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall the
names of the operands and the grammar school division algorithm. For reasons
similar to those in the previous section, we limit the decimal digits to just 0 or 1.
The example is dividing 1,001,010, by 1000, :

1001ten  Quotient
Divisor 10004,,11001010.,,  Dividend

=1
10
101
1010
—1000
10t en Remainder

Divides two operands, called the dividend and divisor, and the result, called
the quotient, are accompanied by a second result, called the remainder. Here is
another way to express the relationship between the components:

Dividend = Quotient X Divisor + Remainder
A Division Algorithm and Hardware

Figure 3.8 shows hardware to mimic our grammar school algorithm. We start with
the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to move
the divisor to the right one digit, so we start with the divisor placed in the left half
of the 64-bit Divisor register and shift it right 1 bit each step to align it with the
dividend. The Remainder register is initialized with the dividend.



—_—

Divisor
Shift right | -—
64 bits
\ <
\./ Quotient
64-bit ALU Shift left |
32 bits

i

Remainder Control
Write test
64 bits A

FIGURE 3.8 First version of the division hardware. The Divisor register, ALU, and Remainder
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the
left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with the
dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new value
into the Remainder register.

Figure 3.9 shows three steps of the first division algorithm. Unlike a human, the
computer isn't smart enough to know in advance whether the divisor is smaller
than the dividend. It must first subtract the divisor in step 1; remember that this is
how we performed the comparison in the set on less than instruction. If the result
is positive, the divisor was smaller or equal to the dividend, so we generatea 1 in
the quotient (step 2a). If the result is negative, the next step is to restore the original
value by adding the divisor back to the remainder and generate a 0 in the quotient
(step 2b). The divisor is shifted right and then we iterate again. The remainder and
quotient will be found in their namesake registers after the iterations are complete.

Initial values 0040 0000 0000 0111
1: Rem = Rem — Div oooo 0010 0000 | (@110 0111
1 2b: Rem <0 => +Div, sll Q,Q0=0 0000 0010 0000 0000 01441
3: Shift Div right 0000 0001 00DO 0000 0111
1: Rem = Rem — Div 0000 0004 0000 (111 0111
2 2b: Rem <0 = +Div, sll Q, Q0 =0 0000 0001 0000 0000 0111
3: Shift Div right 0000 0000 1000 0000 0111
1: Rem = Rem — Div 0000 0000 1000 111 1144
3 2b: Rem <0 = +Div, sll Q, Q0 =0 0000 0000 1000 0000 0111
3: Shift Div right 0000 0000 0100 0000 0111
1: Rem = Rem — Div 0000 0000 0100 ©000 0011
4 2a: Rem=20=>sl1Q,Q0=1 0001 0000 0100 0000 0011
3: Shift Div right 0001 0000 0010 0000 0011
1: Rem = Rem — Div 0001 0000 0010 Q000 0001
5 2a: Rem>0=>sl1Q,Q0=1 0011 0000 0010 0000 0001
3: Shift Div right 0011 0000 0001 0000 0001

FIGURE 3.10 Division example using the algorithm in Figure 3.9. The bit examined to determine
the next step is circled in color.



Floating Point

Going beyond signed and unsigned integers, programming languages support
numbers with fractions, which are called reals in mathematics. Here are some
examples of reals:

3.14159265... _ (pi)

2.71828... _(e)

0.000000001 _ or 1.0, x 10~ (seconds in a nanosecond)
3,155,760,000,  or 3.15576 _ x 10’ (seconds in a typical century)

Notice that in the last case, the number didn't represent a small fraction, but it
was bigger than we could represent with a 32-bit signed integer. The alternative
notation for the last two numbers is called scientific notation, which has a single
digit to the left of the decimal point. A number in scientific notation that has no
leading Os is called a normalized number, which is the usual way to write it. For
example, 1.0, X 107" is in normalized scientific notation, but 0.1 X 107* and
10.0_ X 107" are not.

Just as we can show decimal numbers in scientific notation, we can also show
binary numbers in scientific notation:

1.0, X2
Floating-Point Representation

A designer of a floating-point representation must find a compromise between the
size of the fraction and the size of the exponent, because a fixed word size means
you must take a bit from one to add a bit to the other. This tradeoff is between
precision and range: increasing the size of the fraction enhances the precision
of the fraction, while increasing the size of the exponent increases the range of
numbers that can be represented. As our design guideline from Chapter 2 reminds
us, good design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The
representation of a MIPS floating-point number is shown below, where s is the sign
of the floating-point number (1 meaning negative), exponent is the value of the
8-bit exponent field (including the sign of the exponent), and fraction is the 23-bit
number. As we recall from Chapter 2, this representation is sign and magnitude,
since the sign is a separate bit from the rest of the number.

fraction The value,
generally between 0 and
1, placed in the fraction
field. The fraction is also
called the mantissa.

exponent In the
numerical representation
system of floating-point
arithmetic, the value that
is placed in the exponent
field.

31 30|29|28|27]26|25|24|23 22| 21| 20 |19| 18|17|16|15|14|13|12|11|10| 9 | 8|7|6|5| 4| 3 | 2 | 1 |0
s exponent fraction
1 bit 8 bits 23 bits

In general, floating-point numbers are of the form
(—1’X F x 2%

F involves the value in the fraction field and E involves the value in the exponent
field; the exact relationship to these fields will be spelled out soon. (We will shortly
see that MIPS does something slightly more sophisticated.)



Single precision Double precision Object represented

Exponent Fraction Exponent Fraction
0 0 0 0 0
0 Nonzero 0 Nonzero + denormalized number
1-254 Anything 1-2046 Anything + floating-point number
255 0 2047 0 + infinity
255 Nonzero 2047 Nonzero NaN (Not a Number)

FIGURE 3.13 EEE 754 encoding of floating-point numbers. A separate sign bit determines the
sign. Denormalized numbers are described in the Elaboration on page 222. This information is also found in
Column 4 of the MIPS Reference Data Card at the front of this book.

Thus 00 ... 00, represents 0; the representation of the rest of the numbers uses
the form from before with the hidden 1 added:

(—1)5 X (1 + Fraction) X 2F
where the bits of the fraction represent a number between 0 and 1 and E specifies
the value in the exponent field, to be given in detail shortly. If we number the bits

of the fraction from left to right s1, s2, 3, ..., then the value is

(1P X (1 F(1 X2 (2 X2+ (53 X273+ (s4X27Y +:.)) X2

EXAMPLE Converting Binary to Decimal Floating Point

What decimal number is represented by this single precision float?

31|30|20|28]27|26| 25| 24|23 22| 21|20 10| 1817|1615 14] 13| 12| 11]10] 0 | 8 | 7 [ 6| s [ 4 [ 3] 2|1 | 0
1/1 0 0 0 000 1(/0 1000000000000 00O0O0O0O0

The sign bit is 1, the exponent field contains 129, and the fraction field contains
1 X 272 = 1/4, or 0.25. Using the basic equation,

(—1)° X (1 + Fraction) X 2wponent=Bias) — (_1)! % (1 + 0.25) X 20%-12)
=—1X 1.25% 22
=—125X4
= —5.0

s




Floating-Point Addition

Let’s add numbers in scientific notation by hand to illustrate the problems in
floating-point addition: 9.999 X 10" + 1.610_ X 10~'. Assume that we can store
only four decimal digits of the significand and two decimal digits of the exponent.

Step 1. To be able to add these numbers properly, we must align the decimal

point of the number that has the smaller exponent. Hence, we need
a form of the smaller number, 1610, X 107Y, that matches the
larger exponent. We obtain this by observing that there are multiple
representations of an unnormalized floating-point number in
scientific notation:

1.610_ X 107! =0.1610 X 10°= 0.01610 X 10!
ten ten ten

The number on the right is the version we desire, since its exponent
matches the exponent of the larger number, 9.999,_ X 10'. Thus, the
first step shifts the significand of the smaller number to the right until
its corrected exponent matches that of the larger number. But we can
represent only four decimal digits so, after shifting, the number is
really

0.016 X 10!

Step 2. Next comes the addition of the significands:

9.999
+ 0.0 16@

10.015_
The sum is 10.015_ X 10".

Step 3. This sum is not in normalized scientific notation, so we need to

Step 4.

adjust it:

10.015_ X 10' = 1.0015 X 10

Thus, after the addition we may have to shift the sum to put it into
normalized form, adjusting the exponent appropriately. This example
shows shifting to the right, but if one number were positive and the
other were negative, it would be possible for the sum to have many
leading 0s, requiring left shifts. Whenever the exponent is increased
or decreased, we must check for overflow or underflow—that is, we
must make sure that the exponent still fits in its field.

Since we assumed that the significand can be only four digits long
(excluding the sign), we must round the number. In our grammar
school algorithm, the rules truncate the number if the digit to the
right of the desired point is between 0 and 4 and add 1 to the digit if
the number to the right is between 5 and 9. The number

1.0015_ X 10



Floating-Point Multiplication

Now that we have explained floating-point addition, let’s try floating-point
multiplication. We start by multiplying decimal numbers in scientific notation by
hand: 1.110,, X 10" X 9.200, X 107°. Assume that we can store only four digits
of the significand and two digits of the exponent.

Step 1. Unlike addition, we calculate the exponent of the product by simply

Step 2.

adding the exponents of the operands together:
New exponent = 10 + (—5) =5

Let’s do this with the biased exponents as well to make sure we obtain
the same result: 10 + 127 = 137, and —5 + 127 = 122, so

New exponent = 137 + 122= 259

This result is too large for the 8-bit exponent field, so something is
amiss! The problem is with the bias because we are adding the biases
as well as the exponents:

New exponent = (10 + 127) + (—5 + 127) = (5 + 2 X 127) = 259

Accordingly, to get the correct biased sum when we add biased numbers,
we must subtract the bias from the sum:

New exponent = 137 + 122 — 127 = 259 — 127 = 132 = (5 + 127)
and 5 is indeed the exponent we calculated initially.
Next comes the multiplication of the significands:

1.110,
X 9.200,

0000
0000
2220
9990
10212000,

There are three digits to the right of the decimal point for each
operand, so the decimal point is placed six digits from the right in the
product significand:

10.212000,__

Assuming that we can keep only three digits to the right of the decimal
point, the product is 10.212 X 10°.



Step 3.

Step 4.

This product is unnormalized, so we need to normalize it:

10212 X 10° = 1.0212,_ X 108

Thus, after the multiplication, the product can be shifted right one digit
to put it in normalized form, adding 1 to the exponent. At this point,
we can check for overflow and underflow. Underflow may occur if both
operands are small—that is, if both have large negative exponents.

We assumed that the significand is only four digits long (excluding the

sign), so we must round the number. The number

1.0212, X 106

is rounded to four digits in the significand to
1021, X 10°

Step 5. 'The sign of the product depends on the signs of the original operands.
If they are both the same, the sign is positive; otherwise, it’s negative.

Hence, the product is

+1.021_ X 106

The sign of the sum in the addition algorithm was determined by
addition of the significands, but in multiplication, the sign of the

product is determined by the signs of the operands.

Parallelism and Computer Arithmetic: Sub word Parallelism

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations.

Many graphics systems originally used 8 bits to represent each of the three
primary colors plus 8 bits for a location of a pixel. The addition of speakers and
microphones for teleconferencing and video games suggested support of sound as
well. Audio samples need more than 8 bits of precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords take up
less space when stored in memory (see Section 2.9), but due to the infrequency of
arithmetic operations on these data sizes in typical integer programs, there was
little support beyond data transfers. Architects recognized that many graphics
and audio applications would perform the same operation on vectors of this data.
By partitioning the carry chains within a 128-bit adder, a processor could use
parallelism to perform simultaneous operations on short vectors of sixteen 8-bit
operands, eight 16-bit operands, four 32-bit operands, or two 64-bit operands. The
cost of such partitioned adders was small.

Given that the parallelism occurs within a wide word, the extensions are
classified as subword parallelism. 1t is also classified under the more general name
of data level parallelism. They have been also called vector or SIMD, for single
instruction, multiple data (see Section 6.6). The rising popularity of multimedia



VLDR.F32 VADD.F32, VADD{L,WHS8,U8,516,U16,532,U32} | VAND.64, VAND.128
VSTR.F32 VSUB.F32, VSUBIL,W{S8,U8,516,U16,532,U32} | VORR.64, VORR.128
VLD{1,2,3.4}.{18,116,132} VMUL.F32, VMULL{S8,U8,516,U16,532,U32} VEOR.64, VEOR.128
VST{1,2,3.4}.{18,116,132} VMLA.F32, VMLAL{S8,U8,516,U16,532,U32} VBIC.64, VBIC.128
VMOV{18,116,132,F32}, #imm VMLS.F32, VMLSL{S8,U8,516,U16,532,U32} VORN.64, VORN.128
VMVN.{I8,116,132,F32}, #imm VMAX.{S8,U8,516,U16,532,U32,F32} VCEQ.{18.116,132,F32}
VMOV{164,1128} VMIN.{S8,U8,516,U16,532,U32,F32} VCGE.{S8,U8,516,U16,532,U32,F32}
VMVN. {164,128} VABS.{S8,516,532,F32} VCGT{S8,U8,516,U16,532,U32,F32}
VNEG.{S8,516,532,F32) VCLE.{S8,U8,516,U16,532,U32,F32}
VSHL.{S8,U8,516,U16,532,564,U64) VCLT.(S8,U8,516,U16,532,U32,F32)
VSHR.{S8,U8,516,U16,532,564,U64}) VIST{18,116,132)

FIGURE 3.19 Summary of ARM NEON instructions for subword parallelism. We use the curly brackets {} to show optional
variations of the basic operations: {S8,U8,8} stand for signed and unsigned 8-bit integers or 8-bit data where type doesn't matter, of which 16
fit in a 128-bit register; {S16,U16,16} stand for signed and unsigned 16-bit integers or 16-bit type-less data, of which 8 fit in a 128-bit register;
{832,U32,32} stand for signed and unsigned 32-bit integers or 32-bit type-less data, of which 4 fit in a 128-bit register; {S64,U64,64} stand for
signed and unsigned 64-bit integers or type-less 64-bit data, of which 2 fit in a 128-bit register; [F32} stand for signed and unsigned 32-bit
floating point numbers, of which 4 fit in a 128-bit register. Vector Load reads one n-element structure from memory into 1, 2, 3, or 4 NEON
registers. It loads a single n-element structure to one lane (See Section 6.6), and elements of the register that are not loaded are unchanged.
Vector Store writes one n-element structure into memory from 1, 2, 3, or 4 NEON registers.

5. Post MCQ Test

1. Which ILP supports the ALU division?
a) Subword parallelism
b) CISC
c) Superscalar
d) VLIW
2. In 32 bit representation the scale factor as a range of
a)-128 to 127
b) -256 to 255
c) 0 to 255
d) None of the mentioned
3. Which of the following is not a positional number system?
a) Roman Number System
b) Octal Number System
c) Binary Number System
d) Hexadecimal Number System
4. The octal equivalent of 1100101.001010 is
a) 624.12
b) 145.12
c) 154.12
d) 145.21
5. Floating point representation is used to store

a) Boolean values
b) Whole numbers
c) Real integers
d) integers



Lecture notes for Processor Datapath and Control Units in Computer Architecture

1. Objectives:

v" Summarize the Instruction execution stages.

v Explain different types of addressing modes.

v Understand concepts of Hardwired control and micro programmed control.

v Discuss different types of computer arithmetic operations.

2. OUTCOMES:

v'Understand the architecture and functionality of central processing unit

v Discuss about implementation schemes of data-path and control units and

pipeline performance

3. Pre Test- MCQ type

1. The part of a processor which contains hardware necessary to perform all the
operations required by a computer:
a) Data path
b) Controller
c) Registers
d) Cache
2. What does MAR stand for?
a) Main Address Register
b) Memory Access Register
c) Main Accessible Register
d) Memory Address Register
3. PC Program counter is also called
a) Instruction pointer
b) memory pointer
¢) data counter
d) file pointer
4. Which is the simplest method of implementing hardwired control unit?
a) State Table Method
b) Delay Element Method
c) Sequence Counter Method
d) Using Circuits
5. A set of microinstructions for a single machine instruction is called
a) Program
b) Command
¢) Micro program
d) Micro command



4. PROCESSOR AND CONTROL UNIT

Basic MIPS implementation

A Basic MIPS Implementation

We will be examining an implementation that includes a subset of the core MIPS
instruction set:

m The memory-reference instructions load word (1w) and store word (sw)
m The arithmetic-logical instructions add, sub, AND, OR,and s 1t
m The instructions branch equal (beq) and jump (j), which we add last

This subset does not include all the integer instructions (for example, shift,
multiply, and divide are missing), nor does it include any floating-point instructions.

An Overview of the Implementation

In Chapter 2, we looked at the core MIPS instructions, including the integer
arithmetic-logical instructions, the memory-reference instructions, and the branch
instructions. Much of what needs to be done to implement these instructions is the
same, independent of the exact class of instruction. For every instruction, the first
two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers
to read. For the load word instruction, we need to read only one register, but
most other instructions require reading two registers.

After these two steps, the actions required to complete the instruction depend
on the instruction class. Fortunately, for each of the three instruction classes
(memory-reference, arithmetic-logical, and branches), the actions are largely the
same, independent of the exact instruction. The simplicity and regularity of the
MIPS instruction set simplifies the implementation by making the execution of
many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-logical unit
(ALU) after reading the registers. The memory-reference instructions use the ALU
for an address calculation, the arithmetic-logical instructions for the operation
execution, and branches for comparison. After using the ALU, the actions required
to complete various instruction classes differ. A memory-reference instruction
will need to access the memory either to read data for a load or write data for a
store. An arithmetic-logical or load instruction must write the data from the ALU
or memory back into a register. Lastly, for a branch instruction, we may need to
change the next instruction address based on the comparison; otherwise, the PC
should be incremented by 4 to get the address of the next instruction.
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FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the
major functional units and the major connections between them. All instructions start by using
the program counter to supply the instruction address to the instruction memory. After the instruction is
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
register operands have been fetched, they can be operated on to compute a memory address (for a load or
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to
a register. If the operation is a load or store, the ALU result is used as an address to either store a value from
the registers or load a value from memory into the registers. The result from the ALU or memory is written
back into the register file. Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder
that increments the current PC by 4. The thick lines interconnecting the functional units represent buses,
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a dot
where the lines cross.




FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.
The top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled
by the gate that "ANDs" together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle
multiplexor, whose output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or
the output of the data memory (in the case of a load) for writing into the register file. Finally, the bottommost multiplexor is used to determine
whether the second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or from the offset field of the instruction
(for aload or store). The added control lines are straightforward and determine the operation performed at the ALU, whether the data memory
should read or write, and whether the registers should perform a write operation. The control lines are shown in color to make them easier to
see.
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Building a Data path

A reasonable way to start a datapath design is to examine the major components
required to execute each class of MIPS instructions. Let’s start at the top by looking
at which datapath elements each instruction needs, and then work our way down
through the levels of abstraction. When we show the datapath elements, we will
also show their control signals. We use abstraction in this explanation, starting
from the bottom up.



Figure 4.5a shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address. Figure
4.5b also shows the program counter (PC), which as we saw in Chapter 2
is a register that holds the address of the current instruction. Lastly, we will
need an adder to increment the PC to the address of the next instruction. This
adder, which is combinational, can be built from the ALU described in detail
in [i] Appendix B simply by wiring the control lines so that the control always
specifies an add operation. We will draw such an ALU with the label Add, as in
Figure 4.5, to indicate that it has been permanently made an adder and cannot
perform the other ALU functions.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also increment
the program counter so that it points at the next instruction, 4 bytes later. Figure
4.6 shows how to combine the three elements from Figure 4.5 to form a datapath
that fetches instructions and increments the PC to obtain the address of the next
sequential instruction.

Now let’s consider the R-format instructions (see Figure 2.20 on page 120).
They all read two registers, perform an ALU operation on the contents of the
registers, and write the result to a register. We call these instructions either R-type
instructions or arithmetic-logical instructions (since they perform arithmetic or
logical operations). This instruction class includes add, sub, AND, OR, and s1t,

Instruction
address g
Instruction PC Add Sum
Instruction —
memory
a. Instruction memory b. Program counter c. Adder

FIGURE 4.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 32-bit inputs and place the sum on its output.



> Add

4—»

_| Read
PC address

Instruction —»

Instruction
memory

FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.
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FIGURE 4.7 The two elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and one write
port. The design of multiported register files is discussed in Section B.8 of [} Appendix B. The register file
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no
other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the
write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes
to the register file are edge-triggered, our design can legally read and write the same register within a clock
cycle: the read will get the value written in an earlier clock cycle, while the value written will be available
to a read in a subsequent clock cycle. The inputs carrying the register number to the register file are all 5
bits wide, whereas the lines carrying data values are 32 bits wide. The operation to be performed by the
ALU is controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in
[i] Appendix B. We will use the Zero detection output of the ALU shortly to implement branches. The
overflow output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then.
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FIGURE 4.8 The two units needed to implement loads and stores, in addition to the
register file and ALU of Figure 4.7, are the data memory unit and the sign extension unit.
The memory unit is a state element with inputs for the address and the write data, and a single output for
the read result. There are separate read and write controls, although only one of these may be asserted on
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of
an invalid address can cause problems, as we will see in Chapter 5. The sign extension unit has a 16-bit
input that is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the
data memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is
used for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be
adapted to work with real memory chips. See Section B.8 of [i] Appendix B for further discussion of how
real memory chips work.

A Simple Implementation Scheme

The ALU Control

The MIPS ALU in [ Appendix B defines the 6 following combinations of four
control inputs:

|_ALU control lines | ___Function |

0000 AND
0001 OR

0010 add

0110 subtract
0111 set on less than
1100 NOR

Depending on the instruction class, the ALU will need to perform one of these
first five functions. (NOR is needed for other parts of the MIPS instruction set not
found in the subset we are implementing.) For load word and store word instructions,
we use the ALU to compute the memory address by addition. For the R-type
instructions, the ALU needs to perform one of the five actions (AND, OR, subtract,
add, or set on less than), depending on the value of the 6-bit funct (or function) field



Instruction Instruction Desired ALU control
opcode operation ALU action input
LW 00 add 0010

load word XXX
SW 00 store word XXOOXX add 0010
Branch equal 01 branch equal XXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100104 OR 0001
R-type 10 set on less than 1010410 set on less than 0111

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and
the different function codes for the R-type instruction. The opcode, listed in the first column,
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOp code is 00 or 01, the desired ALU action does not depend on the function code field; in this case, we
say that we “don't care” about the value of the function code, and the funct field is shown as XXXXXX. When
the ALUOp value is 10, then the function code is used to set the ALU control input. See D Appendix B.

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code and
a 2-bit signal as its control inputs, we can return to looking at the rest of the control.
To start this process, let’s identify the fields of an instruction and the control lines
that are needed for the datapath we constructed in Figure 4.11. To understand
how to connect the fields of an instruction to the datapath, it is useful to review

| mwop |  Functfied
| Awopr | Awopo [Fs | Fe [F3|F2 ]| Fi]Fo| operation
X X X X X

0 0 X 0010
X x5 X X X X X X 0110
1 X X X 0 0 0 0 0010
1 X X X 0 0 1 0 0110
1 X X X 0 1 0 0 0000
1 X X X 0 1 0 4 0001
1 X X X 1 0 1 0 0141

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are the
ALUOp and function code field. Only the entries for which the ALU control is asserted are shown. Some
don't-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table
can contain entries 1X and X1, rather than 10 and 01. Note that when the function field is used, the first 2
bits (F5 and F4) of these instructions are always 10, so they are don't-care terms and are replaced with XX
in the truth table.



Field | 0 rs rt rd shamt funct
Bit positions 31:26 25:21 20:16 15:11 10:6 5:0

a. R-type instruction

Field l 35 or 43 rs rt address
Bit positions 31:26 25:21 20:16 15:0
b. Load or store instruction

Field 4 rs I rt [ address
Bit positions 31:26 25:21 20:16 15:0

¢. Branch instruction

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use two
different instruction formats. The jump instructions use another format, which we will discuss shortly.
(a) Instruction format for R-format instructions, which all have an opcode of 0. These instructions have three
register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. The ALU function is
in the funct field and is decoded by the ALU control design in the previous section. The R-type instructions
that we implement are add, sub, AND, OR, and s1t. The shamt field is used only for shifts; we will ignore it
in this chapter. (b) Instruction format for load (opcode = 35_ ) and store (opcode = 43 ) instructions. The
register rs is the base register that is added to the 16-bit address field to form the memory address. For loads,
rt is the destination register for the loaded value. For stores, rt is the source register whose value should be
stored into memory. (c) Instruction format for branch equal (opcode =4). The registers rs and rt are the
source registers that are compared for equality. The 16-bit address field is sign-extended, shifted, and added
to the PC + 4 to compute the branch target address.
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FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identified. The control
lines are shown in color. The ALU control block has also been added. The PC does not require a write control, since it is written once at the end
of every clock cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address.



Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the The reqgister destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).
RegWrite | None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes from the | The second ALU operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.
MemtoReg | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

FIGURE 4.16 The effect of each of the seven control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element

&

can create timing problems. (See

Appendix B for further discussion of this problem.)
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FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction.
The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three
signals for controlling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now
a derived signal, rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures.



Finalizing Control

Now that we have seen how the instructions operate in steps, let’s continue with
the control implementation. The control function can be precisely defined using
the contents of Figure 4.18. The outputs are the control lines, and the input is the
6-bit opcode field, Op [5:0]. Thus, we can create a truth table for each of the outputs
based on the binary encoding of the opcodes.

Figure 4.22 shows the logic in the control unit as one large truth table that
combines all the outputs and that uses the opcode bits as inputs. It completely
specifies the control function, and we can implement it directly in gates in an
automated fashion. We show this final step in Section D.2 in i Appendix D.

oot or oot | Sgrainame | Reormat | 1w | x| beq |
OpS i (

Inputs 0 1 1 0
Op4 0 0 0 0

Op3 0 0 1 0

0Op2 0 0 0 1

Op1 0 1 1 0

Op0 0 k 1 0

Outputs RegDst 1 0 X bt
ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOpO ] 0 0 1

FIGURE 4.22 The control function for the simple single-cycle implementation is
completely specified by this truth table. The top half of the table gives the combinations of input
signals that correspond to the four opcodes, one per column, that determine the control output settings.
(Remember that Op [5:0] corresponds to bits 31:26 of the instruction, which is the op field.) The bottom
portion of the table gives the outputs for each of the four opcodes. Thus, the output RegWrite is asserted for
two different combinations of the inputs. If we consider only the four opcodes shown in this table, then we
can simplify the truth table by using don't cares in the input portion. For example, we can detect an R-format
instruction with the expression Op5 - OpZ, since this is sufficient to distinguish the R-format instructions
from Tw, sw, and beq. We do not take advantage of this simplification, since the rest of the MIPS opcodes
are used in a full implementation.



An Overview of Pipelining

The same principles apply to processors where we pipeline instruction-execution.
MIPS instructions classically take five steps:

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. The regular format of MIPS
instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.
4. Access an operand in data memory.

Write the result into a register.

Time between instr uctlonmnpipelmed

Time between instructions..; ;. ..« =
PR Number of pipe stages

Under ideal conditions and with a large number of instructions, the speed-up
from pipelining is approximately equal to the number of pipe stages; a five-stage
pipeline is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The
example shows, however, that the stages may be imperfectly balanced. Moreover,
pipelining involves some overhead, the source of which will be clearer shortly.
Thus, the time per instruction in the pipelined processor will exceed the minimum
possible, and speed-up will be less than the number of pipeline stages.

Register ALU Data | Register | Total
Instruction class read operation | access write time

Load word (Tw) 200 ps 100 ps 200 ps 200 ps 100 ps | 800 ps
Store word (5w) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps | 600 ps
0R, s1%)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component.
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no
delay.



Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we can get insight into the design
of the MIPS instruction set, which was designed for pipelined execution.

First, all MIPS instructions are the same length. This restriction makes it much
easier to fetch instructions in the first pipeline stage and to decode them in the
second stage. In an instruction set like the x86, where instructions vary from 1 byte
to 15 bytes, pipelining is considerably more challenging. Recent implementations
of the x86 architecture actually translate x86 instructions into simple operations
that look like MIPS instructions and then pipeline the simple operations rather
than the native x86 instructions! (See Section 4.10.)

Second, MIPS has only a few instruction formats, with the source register fields
being located in the same place in each instruction. This symmetry means that the
second stage can begin reading the register file at the same time that the hardware
is determining what type of instruction was fetched. If MIPS instruction formats
were not symmetric, we would need to split stage 2, resulting in six pipeline stages.
We will shortly see the downside of longer pipelines.

Third, memory operands only appear in loads or stores in MIPS. This restriction
means we can use the execute stage to calculate the memory address and then
access memory in the following stage. If we could operate on the operands in
memory, as in the x86, stages 3 and 4 would expand to an address stage, memory
stage, and then execute stage.

Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence,
we need not worry about a single data transfer instruction requiring two data
memory accesses; the requested data can be transferred between processor and
memory in a single pipeline stage.

Pipeline Hazards

There are situations in pipelining when the next instruction cannot execute in the
following clock cycle. These events are called hazards, and there are three different

types.

Hazards

The first hazard is called a structural hazard. It means that the hardware cannot
support the combination of instructions that we want to execute in the same clock
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was
busy doing something else and wouldn’t put clothes away. Our carefully scheduled
pipeline plans would then be foiled.



Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait
for another to complete. Suppose you found a sock at the folding station for which
no match existed. One possible strategy is to run down to your room and search
through your clothes bureau to see if you can find the match. Obviously, while you
are doing the search, loads must wait that have completed drying and are ready to
fold as well as those that have finished washing and are ready to dry.

In a computer pipeline, data hazards arise from the dependence of one
instruction on an earlier one that is still in the pipeline (a relationship that does not
really exist when doing laundry). For example, suppose we have an add instruction
followed immediately by a subtract instruction that uses the sum ($50):

add $s0, $t0, $tl
sub $t2, $s0, $t3

Without intervention, a data hazard could severely stall the pipeline. The add
instruction doesn’'t write its result until the fifth stage, meaning that we would have
to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards, the
results would not be satisfactory. These dependences happen just too often and the
delay is just too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don’t need to wait for
the instruction to complete before trying to resolve the data hazard. For the code
sequence above, as soon as the ALU creates the sum for the add, we can supply it as
an input for the subtract. Adding extra hardware to retrieve the missing item early
from the internal resources is called forwarding or bypassing.

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be connected
by forwarding. Use the drawing in Figure 4.28 to represent the datapath during
the five stages of the pipeline. Align a copy of the datapath for each instruction,
similar to the laundry pipeline in Figure 4.25.

200 400 600 800 1000
T T

T T T

5 |
MEM —EB i
]|

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to
the laundry pipeline in Figure 4.25. Here we use symbols representing the physical resources with
the abbreviations for pipeline stages used throughout the chapter. The symbols for the five stages: IF for
the instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/
register file read stage, with the drawing showing the register file being read; EX for the execution stage,
with the drawing representing the ALU; MEM for the memory access stage, with the box representing data
memory; and WB for the write-back stage, with the drawing showing the register file being written. The
shading indicates the element is used by the instruction. Hence, MEM has a white background because add
does not access the data memory. Shading on the right half of the register file or memory means the element
is read in that stage, and shading of the left half means it is written in that stage. Hence the right half of ID is
shaded in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage

because the register file is written.

Time

add $s0, $t0, St1




Pipelined Data path and Control

Figure 4.33 shows the single-cycle datapath from Section 4.4 with the pipeline
stages identified. The division of an instruction into five stages means a five-stage
pipeline, which in turn means that up to five instructions will be in execution
during any single clock cycle. Thus, we must separate the datapath into five pieces,
with each piece named corresponding to a stage of instruction execution:

1. [IF: Instruction fetch

2. ID: Instruction decode and register file read
3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

In Figure 4.33, these five components correspond roughly to the way the data-
path is drawn; instructions and data move generally from left to right through the

IF: Instruction fetch : ID: Instruction gecoda/ : EX: Execute/ : MEM: Memory accass : WB: Write back
| register fila read |  address calcuiation | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | ' |

I
| | | |

|
ol 2 T i [
| | | |
4 | | |
| | | |
1 | | |
| | | |
| | | |
| | | [
o | | | |
" | i ] | |

ragister 1 data 1 |
u | Adaress | | H—— |
o 1 Read | | |
1 | register 2 | t Addrass |

instrustion H-9 % ; | Read
: Wirite Read : : Data :
Instruction | register data2 | | memory | =
memory
: | ete : | :
[ rxd | | e i
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2

| i [ : i
| AY extend | | |
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FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Fach step of the instruction can be mapped
onto the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either
the ALU result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are
data lines.)



five stages as they complete execution. Returning to our laundry analogy, clothes
get cleaner, drier, and more organized as they move through the line, and they
never move backward.

There are, however, two exceptions to this left-to-right flow of instructions:

m The write-back stage, which places the result back into the register file in the
middle of the datapath

m The selection of the next value of the PC, choosing between the incremented
PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction; these
reverse data movements influence only later instructions in the pipeline. Note that
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FIGURE 4.35 The pipelined version of the datapath in Figure 4.33. The pipeline registers, in color, separate each pipeline stage.
They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the
IF/ID register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC
address. We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64
bits, respectively.

We show the instruction abbreviation 1w with the name of the pipe stage that is
active in each figure. The five stages are the following:

1. Instruction fetch: The top portion of Figure 4.36 shows the instruction being
read from memory using the address in the PC and then being placed in the
IE/ID pipeline register. The PC address is incremented by 4 and then written
back into the PC to be ready for the next clock cycle. This incremented
address is also saved in the [F/ID pipeline register in case it is needed later
for an instruction, such as beq. The computer cannot know which type of
instruction is being fetched, so it must prepare for any instruction, passing
potentially needed information down the pipeline.



2. Instruction decode and register file read: The bottom portion of Figure 4.36
shows the instruction portion of the IF/ID pipeline register supplying the
16-bit immediate field, which is sign-extended to 32 bits, and the register
numbers to read the two registers. All three values are stored in the ID/EX
pipeline register, along with the incremented PC address. We again transfer

everything that might be needed by any instruction during a later clock
cycle.

3. Execute or address calculation: Figure 4.37 shows that the load instruction
reads the contents of register 1 and the sign-extended immediate from the
ID/EX pipeline register and adds them using the ALU. That sum is placed in
the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.38 shows the load instruction
reading the data memory using the address from the EXMEM pipeline
register and loading the data into the MEM/WB pipeline register.

5. Write-back: The bottom portion of Figure 4.38 shows the final step: reading
the data from the MEM/WB pipeline register and writing it into the register
file in the middle of the figure.

Data Hazards: Forwarding versus Stalling

DEX
8 Y ‘ EXMEM
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FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions of
the pipeline registers. The control values for the last three stages are created during the instruction decode stage and then placed in the
ID/EX pipeline register. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.



Let’s look at a sequence with many dependences, shown in color:

sub %2, $1.3%3 # Register $2 written by sub

and $12,42,%$5 # lst operand($2) depends on sub
or $13,46,%2 # 2nd operand($2) depends on sub
add $14,%2,%2 # 1st($2) & 2nd($2) depend on sub

SW $15,100(%82) # Base ($2) depends on sub

The last four instructions are all dependent on the result in register $2 of the
first instruction. If register $ 2 had the value 10 before the subtract instruction and
—20 afterwards, the programmer intends that —20 will be used in the following
instructions that refer to register $2.

Time (in clock cycles)
Value of CC1 CC2 CC3 cc4 CCs CCé6 CC7 CcCs8 CcC9
register $2: 10 10 10 10 1020 20 -20 -20 -20

Program
execution
order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, 52

add $14, $2,52

sw $15, 100($2)

FIGURE 4.52 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the
dependences. All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle 1. The first instruction
writes into $2, and all the following instructions read $ 2. This register is written in clock cycle 5, so the proper value is unavailable before clock
cycle 5. (A read of a register during a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The
colored lines from the top datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data hazards.



Data Hazards and Stalls

As we said in Section 4.5, one case where forwarding cannot save the day is when
an instruction tries to read a register following a load instruction that writes
the same register. Figure 4.58 illustrates the problem. The data is still being read
from memory in clock cycle 4 while the ALU is performing the operation for the
following instruction. Something must stall the pipeline for the combination of
load followed by an instruction that reads its result.
Hence, in addition to a forwarding unit, we need a hazard defection unit. It
operates during the ID stage so that it can insert the stall between the load and its
Time (in clock cycles)
cc1 cc2 cc3 ccC4 CC5 2 CC6  CC7T  CC8  CC9Y

Program
execution
order

(in instructions)

Iw $2, 20($1)

and $4, 52, $5

or $8, 52, $6

add $9, $4, $2

sh $1, $6, §7

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.



Control Hazards
Time (in clock cycles)

CC1 CC2 CC3 CC4 CCs CC6 CC7 CCs8 CC9

Program
execution
order

(in instructions)

40 beq $1, $3, 28

—

44 and $12, $2, $5
48 or $13, $6, $2
52 add $14, $2, $2

—

| 72 Iw $4, 50($7)

A

FIGURE 4.61 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, ...)
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those
three following instructions will begin execution before be g branches to 1w at location 72. (Figure 4.31 assumed extra hardware to reduce the
control hazard to one clock cycle; this figure uses the nonoptimized datapath.)

Assume Branch Not Taken

As we saw in Section 4.5, stalling until the branch is complete is too slow. One
improvement over branch stalling is to predict that the branch will not be taken
and thus continue execution down the sequential instruction stream. If the branch
is taken, the instructions that are being fetched and decoded must be discarded.
Execution continues at the branch target. If branches are untaken half the time,
and if it costs little to discard the instructions, this optimization halves the cost of
control hazards.

To discard instructions, we merely change the original control values to 0s, much
as we did to stall for a load-use data hazard. The difference is that we must also
change the three instructions in the IF, ID, and EX stages when the branch reaches
the MEM stage; for load-use stalls, we just change control to 0 in the ID stage and
let them percolate through the pipeline. Discarding instructions, then, means we
must be able to flush instructions in the IF, ID, and EX stages of the pipeline.



Reducing the Delay of Branches

One way to improve branch performance is to reduce the cost of the taken branch.
Thus far, we have assumed the next PC for a branch is selected in the MEM
stage, but if we move the branch execution earlier in the pipeline, then fewer
instructions need be flushed. The MIPS architecture was designed to support fast
single-cycle branches that could be pipelined with a small branch penalty. The
designers observed that many branches rely only on simple tests (equality or sign,
for example) and that such tests do not require a full ALU operation but can be
done with at most a few gates. When a more complex branch decision is required,
a separate instruction that uses an ALU to perform a comparison is required—a
situation that is similar to the use of condition codes for branches (see Chapter 2).

Moving the branch decision up requires two actions to occur earlier: computing
the branch target address and evaluating the branch decision. The easy part of
this change is to move up the branch address calculation. We already have the PC
value and the immediate field in the IF/ID pipeline register, so we just move the
branch adder from the EX stage to the ID stage; of course, the branch target address
calculation will be performed for all instructions, but only used when needed.

The harder part is the branch decision itself. For branch equal, we would compare
the two registers read during the ID stage to see if they are equal. Equality can be
tested by first exclusive ORing their respective bits and then ORing all the results.
Moving the branch test to the ID stage implies additional forwarding and hazard
detection hardware, since a branch dependent on a result still in the pipeline must
still work properly with this optimization. For example, to implement branch on
equal (and its inverse), we will need to forward results to the equality test logic that
operates during ID. There are two complicating factors:

1. During ID, we must decode the instruction, decide whether a bypass to the
equality unit is needed, and complete the equality comparison so that if
the instruction is a branch, we can set the PC to the branch target address.

Forwarding for the operands of branches was formerly handled by the ALU
forwarding logic, but the introduction of the equality test unit in ID will
require new forwarding logic. Note that the bypassed source operands of a
branch can come from either the ALU/MEM or MEM/WB pipeline latches.

2. Because the values in a branch comparison are needed during ID but may be
produced later in time, it is possible that a data hazard can occur and a stall
will be needed. For example, if an ALU instruction immediately preceding
a branch produces one of the operands for the comparison in the branch,
a stall will be required, since the EX stage for the ALU instruction will
occur after the ID cycle of the branch. By extension, if a load is immediately
followed by a conditional branch that is on the load result, two stall cycles
will be needed, as the result from the load appears at the end of the MEM
cycle but is needed at the beginning of ID for the branch.



Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of branch prediction. In that case,
we predict that branches are untaken, flushing the pipeline when we are wrong. For
the simple five-stage pipeline, such an approach, possibly coupled with compiler-
based prediction, is probably adequate. With deeper pipelines, the branch penalty
increases when measured in clock cycles. Similarly, with multiple issue (see Section
4.10), the branch penalty increases in terms of instructions lost. This combination
means that in an aggressive pipeline, a simple static prediction scheme will probably
waste too much performance. As we mentioned in Section 4.5, with more hardware
it is possible to try to predict branch behavior during program execution.

One approach is to look up the address of the instruction to see if a branch was
taken the last time this instruction was executed, and, if so, to begin fetching new
instructions from the same place as the last time. This technique is called dynamic
branch prediction.

One implementation of that approach is a branch prediction buffer or branch
history table. A branch prediction buffer is a small memory indexed by the lower
portion of the address of the branch instruction. The memory contains a bit that
says whether the branch was recently taken or not.

This is the simplest sort of buffer; we don't know, in fact, if the prediction is
the right one—it may have been put there by another branch that has the same
low-order address bits. However, this doesn't affect correctness. Prediction is just
a hint that we hope is correct, so fetching begins in the predicted direction. If the
hint turns out to be wrong, the incorrectly predicted instructions are deleted, the
prediction bit is inverted and stored back, and the proper sequence is fetched and
executed.

This simple 1-bit prediction scheme has a performance shortcoming: even if a
branch is almost always taken, we can predict incorrectly twice, rather than once,
when it is not taken. The following example shows this dilemma.

Not taken / \\
Taken \\\_ /

Not taken - N

Taken

Not taken

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor,
which is incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of
its range as the division between taken and not taken.



Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of events.
For example, the Intel x86 uses interrupt. We follow the MIPS convention, using
the term exception to refer to any unexpected change in control flow without
distinguishing whether the cause is internal or external; we use the term interrupt
only when the event is externally caused. Here are five examples showing whether
the situation is internally generated by the processor or externally generated:

MIPS terminology

I/0 device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

Many of the requirements to support exceptions come from the specific
situation that causes an exception to occur. Accordingly, we will return to this
topic in Chapter 5, when we will better understand the motivation for additional
capabilities in the exception mechanism. In this section, we deal with the control
implementation for detecting two types of exceptions that arise from the portions
of the instruction set and implementation that we have already discussed.

Detecting exceptional conditions and taking the appropriate action is often
on the critical timing path of a processor, which determines the clock cycle time
and thus performance. Without proper attention to exceptions during design of
the control unit, attempts to add exceptions to a complicated implementation
can significantly reduce performance, as well as complicate the task of getting the
design correct.

How Exceptions Are Handled in the MIPS Architecture

The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. We'll use
arithmetic overflow in the instruction add $1, $2, $1 as the example exception
in the next few pages. The basic action that the processor must perform when an
exception occurs is to save the address of the offending instruction in the exception

program counter (EPC) and then transfer control to the operating system at some
specified address.



A second method, is to use vectored interrupts. In a vectored interrupt, the
address to which control is transferred is determined by the cause of the exception.
For example, to accommodate the two exception types listed above, we might
define the following two exception vector addresses:

Undefined instruction 8000 0000,
Arithmetic overflow 8000 0180, ,

The operating system knows the reason for the exception by the address at which
it is initiated. The addresses are separated by 32 bytes or eight instructions, and the
operating system must record the reason for the exception and may perform some
limited processing in this sequence. When the exception is not vectored, a single
entry point for all exceptions can be used, and the operating system decodes the
status register to find the cause.
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FIGURE 4.66 The datapath with controls to handle exceptions. The key additions include a new input with the value 8000 0180,
in the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to save
the address of the instruction that caused the exception. The 8000 0180,  input to the multiplexor is the initial address to begin fetching
instructions in the event of an exception. Although not shown, the ALU overflow signal is an input to the control unit.



5. Post MCQ Test

1.

The situation wherein the data of operands are not available is called

a) Data hazard

b) Stock

c) Deadlock

d) Structural hazard

The stalling of the processor due to the unavailability of the instructions is called as

a) Control hazard

b) structural hazard

¢) Input hazard

d) None of the mentioned

. The time lost due to the branch instruction is often referred to as

a) Latency

b) Delay

c) Branch penalty

d) None of the mentioned

The algorithm followed in most of the systems to perform out of order execution is

a) Tomasulo algorithm
b) Score carding
c) Reader-writer algorithm
d) None of the mentioned
If during the execution of an instruction an exception is raised then
a) The instruction is executed and the exception is handled
b) The instruction is halted and the exception is handled
c) The processor completes the execution and saves the data and then handle the
exception
d) None of the mentioned
is/are types of exceptions.
a) Trap
b) Interrupt
c) System calls
d) All of the mentioned



Lecture notes for Memory and 1/0O Systems in Computer Architecture

1. Objectives:

Learn the concept of memory hierarchy.

Discuss the concept of memory organization.

Explain the use of cache memory and virtual memory.
Understand the concept of memory management hardware.

DN NN

2. OUTCOMES:

v' Exemplify in a better way the 1/0O and memory organization
v Explain the concept, interfacing and organization of of various memories and 1/0
systems

3. Pre Test- MCQ type

The standard SRAM chips are costly as

a) They use highly advanced micro-electronic devices

b) They house 6 transistor per chip

c) They require specially designed PCB’s

d) None of the mentioned

The fastest data access is provided using

a) Caches

b) DRAM’s

c) SRAM’s

d) Registers

The last on the hierarchy scale of memory devices is

a) Main memory

b) Secondary memory

c) TLB

d) Flash drives

The reason for the implementation of the cache memory is
a) To increase the internal memory of the system

b) The difference in speeds of operation of the processor and memory
c) To reduce the memory access and cycle time

d) All of the mentioned

The effectiveness of the cache memory is based on the property of
a) Locality of reference

b) Memory localisation

c) Memory size

d) None of the mentioned



4. MEMORY AND I/0 SYSTEMS

Memory hierarchy

This principle of locality underlies both the way in which you did your work in
the library and the way that programs operate. The principle of locality states that
programs access a relatively small portion of their address space at any instant of
time, just as you accessed a very small portion of the library’s collection. There are
two different types of locality:

m Temporal locality (locality in time): if an item is referenced, it will tend to be
referenced again soon. If you recently brought a book to your desk to look at,
you will probably need to look at it again soon.

W Spatial locality (locality in space): if an item is referenced, items whose
addresses are close by will tend to be referenced soon. For example, when
you brought out the book on early English computers to find out about the
EDSAC, you also noticed that there was another book shelved next to it about
early mechanical computers, so you also brought back that book and, later
on, found something useful in that book. Libraries put books on the same
topic together on the same shelves to increase spatial locality. We'll see how
memory hierarchies use spatial locality a little later in this chapter.

- _ Current
Speed Processor Size Cost ($/bit) technology
Fastest Memory Smallest Highest SRAM
Memory DRAM
Slowest Memovy Biggest Lowest Magnetic disk

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see
Section 5.2.



Processor

Data is transferred

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called a block or
a line. Usually we transfer an entire block when we copy something between levels.

The upper level—the one closer to the processor—is smaller and faster than the lower
level, since the upper level uses technology that is more expensive. Figure 5.2 shows
that the minimum unit of information that can be either present or not present in
the two-level hierarchy is called a block or a line; in our library analogy, a block of
information is one book.

If the data requested by the processor appears in some block in the upper level,
this is called a hit (analogous to your finding the information in one of the books
on your desk). If the data is not found in the upper level, the request is called a miss.
The lower level in the hierarchy is then accessed to retrieve the block containing the
requested data. (Continuing our analogy, you go from your desk to the shelves to
find the desired book.) The hit rate, or hit ratio, is the fraction of memory accesses
found in the upper level; it is often used as a measure of the performance of the
memory hierarchy. The miss rate (1-hit rate) is the fraction of memory accesses
not found in the upper level.

Since performance is the major reason for having a memory hierarchy, the time
to service hits and misses is important. Hit time is the time to access the upper level
of the memory hierarchy, which includes the time needed to determine whether
the access is a hit or a miss (that is, the time needed to look through the books on
the desk). The miss penalty is the time to replace a block in the upper level with
the corresponding block from the lower level, plus the time to deliver this block to
the processor (or the time to get another book from the shelves and place it on the
desk). Because the upper level is smaller and built using faster memory parts, the
hit time will be much smaller than the time to access the next level in the hierarchy,
which is the major component of the miss penalty. (The time to examine the books
on the desk is much smaller than the time to get up and get a new book from the
shelves.)



Memory technologies

There are four primary technologies used today in memory hierarchies. Main
memory is implemented from DRAM (dynamic random access memory), while
levels closer to the processor (caches) use SRAM (static random access memory).
DRAM is less costly per bit than SRAM, although it is substantially slower. The
price difference arises because DRAM uses significantly less area per bit of memory,
and DRAMs thus have larger capacity for the same amount of silicon; the speed
difference arises from several factors described in Section B.9 of [i] Appendix B.
The third technology is flash memory. This nonvolatile memory is the secondary
memory in Personal Mobile Devices. The fourth technology, used to implement
the largest and slowest level in the hierarchy in servers, is magnetic disk. The access
time and price per bit vary widely among these technologies, as the table below
shows, using typical values for 2012:

SRAM semiconductor memory 0.5-25ns $500-$1000

DRAM semiconductor memory 50-70 ns $10-%20

Flash semiconductor memory 5,000-50,000 ns $0.75-$1.00
Magnetic disk 5,000,000-20,000,000 ns $0.05-$0.10

We describe each memory technology in the remainder of this section.

SRAM Technology

SRAMs are simply integrated circuits that are memory arrays with (usually) a
single access port that can provide either a read or a write. SRAMs have a fixed
access time to any datum, though the read and write access times may differ.

SRAMs don't need to refresh and so the access time is very close to the cycle
time. SRAMs typically use six to eight transistors per bit to prevent the information
from being disturbed when read. SRAM needs only minimal power to retain the
charge in standby mode.

In the past, most PCs and server systems used separate SRAM chips for either
their primary, secondary, or even tertiary caches. Today, thanks to Moore’s Law, all
levels of caches are integrated onto the processor chip, so the market for separate
SRAM chips has nearlv evaporated.



DRAM Technology

In a SRAM, as long as power is applied, the value can be kept indefinitely. In a
dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor.
A single transistor is then used to access this stored charge, either to read the
value or to overwrite the charge stored there. Because DRAMs use only a single
transistor per bit of storage, they are much denser and cheaper per bit than SRAM.
As DRAMs store the charge on a capacitor, it cannot be kept indefinitely and must
periodically be refreshed. That is why this memory structure is called dynamic, as
opposed to the static storage in an SRAM cell.

To refresh the cell, we merely read its contents and write it back. The charge
can be kept for several milliseconds. If every bit had to be read out of the DRAM
and then written back individually, we would constantly be refreshing the DRAM,
leaving no time for accessing it. Fortunately, DRAMs use a two-level decoding
structure, and this allows us to refresh an entire row (which shares a word line)
with a read cycle followed immediately by a write cycle.

Bank I
Column 1
|

A

Rd/Wr
Act

-~

A4

Row

FIGURE 5.4 Internal organization of a DRAM. Modern DRAMs are organized in banks, typically
four for DDR3. Each bank consists of a series of rows. Sending a PRE (precharge) command opens or closesa
bank. A row address is sent with an Act (activate), which causes the row to transfer to a buffer. When the row
is in the buffer, it can be transferred by successive column addresses at whatever the width of the DRAM is
(typically 4, 8, or 16 bits in DDR3) or by specifying a block transfer and the starting address. Each command,
as well as block transfers, is synchronized with a clock.



Total access time to

Year Introduced $ per GIB a new row/column
1980 64 Kibibit $1,500,000 250 ns 150 ns
1983 256 Kibibit $500,000 185 ns 100 ns
1985 1 Mebibit $200,000 135 ns 40 ns
1989 4 Mebibit $50,000 110 ns 40 ns
1992 16 Mebibit $15,000 90 ns 30 ns
1996 64 Mebibit $10,000 60 ns 12 ns
1998 128 Mebibit $4,000 60 ns 10 ns
2000 256 Mebibit $1,000 55 ns 7ns
2004 512 Mebibit $250 50 ns 5ns
2007 1 Gibibit $50 45 ns 1.25ns
2010 2 Gibibit $30 40 ns 1ns
2012 4 Gibibit $1 35ns 0.8 ns

FIGURE 5.5 DRAM size increased by multiples of four approximately once every three
years until 1996, and thereafter considerably slower. The improvements in access time have been

slower but continuous, and cost roughly tracks density improvements, although cost is often affected by other
issues, such as availability and demand. The cost per gibibyte is not adjusted for inflation.

Flash Memory

Flash memory is a type of electrically erasable programmable read-only memory
(EEPROM).

Unlike disks and DRAM, but like other EEPROM technologies, writes can wear out
flash memory bits. To cope with such limits, most flash products include a controller
to spread the writes by remapping blocks that have been written many times to less
trodden blocks. This technique is called wear leveling. With wear leveling, personal
mobile devices are very unlikely to exceed the write limits in the flash. Such wear
leveling lowers the potential performance of flash, but it is needed unless higher-
level software monitors block wear. Flash controllers that perform wear leveling can
also improve yield by mapping out memory cells that were manufactured incorrectly.
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FIGURE 5.6 A disk showing 10 disk platters and the read/write heads. The diameter of
today’s disks is 2.5 or 3.5 inches, and there are typically one or two platters per drive today.

Unce the head has reached the correct track, we must wait for the desired sector
to rotate under the read/write head. This time is called the rotational latency or
rotational delay. The average latency to the desired information is halfway around
the disk. Disks rotate at 5400 RPM to 15,000 RPM. The average rotational latency
at 5400 RPM is

. 0.5 rotation 0.5 rotation
Average rotational latency = S100 RPM R
; 5400 RPM/[(;O“_—J
minute

= (.0056 seconds = 5.6 ms

The last component of a disk access, transfer time, is the time to transfer a block
of bits. The transfer time is a function of the sector size, the rotation speed, and the
recording density of a track. Transfer rates in 2012 were between 100 and 200 MB/sec.

One complication is that most disk controllers have a built-in cache that stores
sectors as they are passed over; transfer rates from the cache are typically higher,
and were up to 750 MB/sec (6 Gbit/sec) in 2012.



The Basics of Caches

X4 X4
X X5
Xn-2 Xn_2
Xn- 1 Xﬂ- 1
Xz Xz

Xn
X3 X3

a. Before the reference to X,  b. After the reference to X,

FIGURE 5.7 The cache just before and just after a reference to a word x_ that is not
initially in the cache. This reference causes a miss that forces the cache to fetch X from memory and
insert it into the cache.

Cache
§'—°1—
855

110
111

100
101

J \ N

00001 00101 01001 01101 10001 10101 11001 11101
Memory

FIGURE 5.8 A direct-mapped cache with eight entries showing the addresses of memory
words between 0 and 31 that map to the same cache locations. Because there are eight
words in the cache, an address X maps to the direct-mapped cache word X modulo 8. That is, the low-order
log (8) = 3 bits are used as the cache index. Thus, addresses 00001 _ , 01001 _, 10001 _,and 11001 _ all map

to entry 001, of the cache, while addresses 00101, , 01101, 10101, and 11101, all map to entry 101,
of the cache.



In looking at the scenario in Figure 5.7, there are two questions to answer: How
do we know if a data item is in the cache? Moreover, if it is, how do we find it? The
answers are related. If each word can go in exactly one place in the cache, then it
is straightforward to find the word if it is in the cache. The simplest way to assign
a location in the cache for each word in memory is to assign the cache location
based on the address of the word in memory. This cache structure is called direct
mapped, since each memory location is mapped directly to exactly one location in
the cache. The typical mapping between addresses and cache locations for a direct-
mapped cache is usually simple. For example, almost all direct-mapped caches use
this mapping to find a block:

(Block address) modulo (Number of blocks in the cache)

If the number of entries in the cache is a power of 2, then modulo can be
computed simply by using the low-order log, (cache size in blocks) bits of the
address. Thus, an 8-block cache uses the three lowest bits (8 = 2°) of the block
address. For example, Figure 5.8 shows how the memory addresses between 1
(00001 ) and 29, (11101 ) map to locations 1 (001 )and 5 (101 ) m 2
direct-mapped cache of eight words.

Because each cache location can contain the contents of a number of different
memory locations, how do we know whether the data in the cache corresponds
to a requested word? That is, how do we know whether a requested word is in the
cache or not? We answer this question by adding a set of tags to the cache. The
tags contain the address information required to identify whether a word in the
cache corresponds to the requested word. The tag needs only to contain the upper
portion of the address, corresponding to the bits that are not used as an index into
the cache. For example, in Figure 5.8 we need only have the upper 2 of the 5 address
bits in the tag, since the lower 3-bit index field of the address selects the block.
Architects omit the index bits because they are redundant, since by definition the
index field of any address of a cache block must be that block number.

Accessing a Cache

Below is a sequence of nine memory references to an empty eight-block cache,
including the action for each reference. Figure 5.9 shows how the contents of the
cache change on each miss. Since there are eight blocks in the cache, the low-order
three bits of an address give the block number:

Decimal address Binary address Hit or miss Assigned cache block
of reference of reference in cache {where found or placed)

10110, miss (5.6b) (10110, mod 8) =110

11010, miss (5.6¢) (11010 mod 8) = D10
22 10110, hit (10110, mod 8) = 110,
26 11010, hit (11010, mod 8) = 010,
16 10000M miss (5.6d) (100'-'Om mod 8) = OCIOM
3 00011 miss (5.6e) (00011 mod 8)=011_
16 10000, hit (10000, mod 8) = 000,
18 10010, miss (5.6f) (10010, mod 8) = 010
16 10000m hit (100 nnm mod 8) = |:'O'C‘rm




mdox | v | Tag |  Dpata | index | v | Ta |  pata |
000 000

N N
001 N 001 N
010 N 010 N
011 N 011 N
100 N 100 N
101 N 101 N
110 N 140 Y 10two Memory (10110,
111 N 141 N
a. The initial state of the cache after poweron b. After handling a miss of address (10110,

mdox | v | tee |  pata | mnm-z-
000

N Memory (10000,,.)
001 N 001 N
010 Y % Memory (11010,,.) 010 Y 1100 Memory (11040,,,,)
011 N 011 N
100 N 100 N
101 N 101 N
110 Y 1040 Memory (10110,,.) 110 Y 100 Memory (10110,
111 N 111 N
c. After handling a miss of address (11010,,) d. After handling a miss of address (10000,,,)
-ﬂ“-ﬂ_ mnm_
Memory (10000,,,) 100 Memory (10000,,,,)
001 N 001 N
010 Y 11iwo Memory (11010, 010 Y 1000 Memory (10010,,,)
011 Y 00,40 Memory (00011, 011 Y 0040 Memory (00011,,,)
100 N 100 N
101 N 101 N
110 Y 1000 Memory (10110,,.) 110 Y 10po Memory (10110,
111 N 111 N
e. After handling a miss of address (00011,,) f. After handling a miss of address (10010,,,)

FIGURE 5.9 The cache contents are shown after each reference request that misses, with the index and tag fields
shown in binary for the sequence of addresses on page 386. The cache is initially empty, with all valid bits (V entry in cache)
turned off (N). The processor requests the following addresses: 10110__ (miss), 11010, (miss), 10110 (hit), 11010, (hit), 10000, (miss),
00011 (miss), 10000, _ (hit), 10010, (miss),and 10000, _ (hit). The figures show the cache contents after each miss in the sequence has been
handled. When address 10010, (18) is referenced, the entry for address 11010, (26) must be replaced, and a reference to 11010, will cause a
subsequent miss. The tag field will contain only the upper portion of the address. The full address of a word contained in cache block i with tag
field j for this cache is j X 8 + i, or equivalently the concatenation of the tag field j and the index i. For example, in cache fabove, index 010,
has tag 10, and corresponds to address 10010,



Measuring and Improving Cache Performance
CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Thus,

CPU time = (CPU execution clock cycles + Memory-stall clock cycles)
X Clock cycle time

The memory-stall clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplified model of the
memory system. In real processors, the stalls generated by reads and writes can be
quite complex, and accurate performance prediction usually requires very detailed
simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming
from reads plus those coming from writes:

Memory-stall clock cycles = (Read-stall cycles + Write-stall cycles)

The read-stall cycles can be defined in terms of the number of read accesses per
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-stall cycles = SRS X Read miss rate X Read miss penalty
Program

Writes are more complicated. For a write-through scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block before continuing
the write (see the Elaboration on page 394 for more details on dealing with writes),
and write buffer stalls, which occur when the write buffer is full when a write
occurs. Thus, the cycles stalled for writes equals the sum of these two:

Write-stall cycles = W X Write miss rate X Write miss penalty

Program
+ Write buffer stalls

Because the write buffer stalls depend on the proximity of writes, and not just
the frequency, it is not possible to give a simple equation to compute such stalls.
Fortunately, in systems with a reasonable write buffer depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that significantly exceeds
the average write frequency in programs (e.g., by a factor of 2), the write buffer
stalls will be small, and we can safely ignore them. If a system did not meet these
criteria, it would not be well designed; instead, the designer should have used either
a deeper write buffer or a write-back organization.



Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 5.8.

In most write-through cache organizations, the read and write miss penalties are
the same (the time to fetch the block from memory). If we assume that the write
buffer stalls are negligible, we can combine the reads and writes by using a single
miss rate and the miss penalty:

Memory accesses

Memory-stall clock cycles = X Miss rate X Miss penalty

Program

We can also factor this as

Instructions % Misses

Memory-stall clock cycles = X Miss penalty

Program Instruction

Lets consider a simple example to help us understand the impact of cache
performance on processor performance.

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the data
cache is 4%. If a processor has a CPI of 2 without any memory stalls and the
miss penalty is 100 cycles for all misses, determine how much faster a processor
would run with a perfect cache that never missed. Assume the frequency of all
loads and stores is 36%.

The number of memory miss cycles for instructions in terms of the Instruction
count (I) is
Instruction miss cycles = 1 X 2% X 100 = 2.00 X I

As the frequency of all loads and stores is 36%, we can find the number of
memory miss cycles for data references:

Data miss cycles = I X 36% X 4% X 100 = 1.44 X |



The total number of memory-stall cycles is 2.00 [ + 1.44 [ = 3.44 1. This is
more than three cycles of memory stall per instruction. Accordingly, the total
CPI including memory stalls is 2 + 3.44 = 5.44. Since there is no change in
instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls _ IXCPI; X Clock cycle
CPU time with perfect cache TIX CPloerseq X Clock cycle
_ CPly,y _ 544
C CPhug 2

5.44
The performance with the perfect cache is better byT = 2.72,

What happens if the processor is made faster, but the memory system is not? The
amount of time spent on memory stalls will take up an increasing fraction of the
execution time; Amdahls Law, which we examined in Chapter 1, reminds us of
this fact. A few simple examples show how serious this problem can be. Suppose
we speed-up the computer in the previous example by reducing its CPI from 2 to 1
without changing the clock rate, which might be done with an improved pipeline.
The system with cache misses would then have a CPI of 1 + 3.44 = 4.44, and the
system with the perfect cache would be

ﬁ = 4.44 times as fast,

The amount of execution time spent on memory stalls would have risen from

s
5.44

to
344 _ 7%
4.44

Similarly, increasing the clock rate without changing the memory system also
increases the performance lost due to cache misses.

The previous examples and equations assume that the hit time is not a factor in
determining cache performance. Clearly, if the hit time increases, the total time to
access a word from the memory system will increase, possibly causing an increase in
the processor cycle time. Although we will see additional examples of what can increase



Reducing Cache Misses by More Flexible Placement
of Blocks

So far, when we place a block in the cache, we have used a simple placement scheme:
A block can go in exactly one place in the cache. As mentioned earlier, it is called
direct mapped because there is a direct mapping from any block address in memory
to a single location in the upper level of the hierarchy. However, there is actually a
whole range of schemes for placing blocks. Direct mapped, where a block can be
placed in exactly one location, is at one extreme.

At the other extreme is a scheme where a block can be placed in any location
in the cache. Such a scheme is called fully associative, because a block in memory
may be associated with any entry in the cache. To find a given block in a fully
associative cache, all the entries in the cache must be searched because a block
can be placed in any one. To make the search practical, it is done in parallel with
a comparator associated with each cache entry. These comparators significantly
increase the hardware cost, effectively making fully associative placement practical
only for caches with small numbers of blacks.

The middle range of designs between direct mapped and fully associative
is called set associative. In a set-associative cache, there are a fixed number of
locations where each block can be placed. A set-associative cache with » locations
for a block is called an n-way set-associative cache. An n-way set-associative cache
consists of a number of sets, each of which consists of # blocks. Each block in the
memory maps to a unique sef in the cache given by the index field, and a block can
be placed in any element of that set. Thus, a set-associative placement combines
direct-mapped placement and fully associative placement: a block is directly
mapped into a set, and then all the blocks in the set are searched for a match. For
example, Figure 5.14 shows where block 12 may be placed in a cache with eight
blocks total, according to the three block placement policies.

Remember that in a direct-mapped cache, the position of a memory block is
given by

(Block number) modulo (Number of blocks in the cache)

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
Te Te
Tag 2 a9l |2 o 2
Search Search I l Search I I ] ] I l ] I

FIGURE 5.14 The location of a memory block whose address is 12 in a cache with eight
blocks varies for direct-mapped, set-associative, and fully associative placement. In direct-
mapped placement, there is only one cache block where memory block 12 can be found, and that block is
given by (12 modulo 8) = 4. In a two-way set-associative cache, there would be four sets, and memory block
12 must be in set (12 mod 4) = 0; the memory block could be in either element of the set. In a fully associative
placement, the memory block for block address 12 can appear in any of the eight cache blocks.



Misses and Assoclatlvity In Caches

Assume there are three small caches, each consisting of four one-word blocks.
One cache is fully associative, a second is two-way set-associative, and the
third is direct-mapped. Find the number of misses for each cache organization
given the following sequence of block addresses: 0, 8, 0, 6, and 8.

The direct-mapped case is easiest. First, let’s determine to which cache block
each block address maps:

Block address Cache block

0 (O modulo 4) = 0
6 (6 modulo 4) = 2
8 (8 modulo 4) = 0

Now we can fill in the cache contents after each reference, using a blank entry to
mean that the block is invalid, colored text to show a new entry added to the cache
for the associated reference, and plain text to show an old entry in the cache:

Address of memory Contents of cache blocks after reference
Bk Sineouad T T (Ve ] [

0 miss Memory[0]
8 miss Memory[8]
0 miss Memory[0]
6 miss Memory{0] Memory[6]
8 miss Memory[8] Memory[6]

The direct-mapped cache generates five misses for the five accesses.
The set-associative cache has two sets (with indices 0 and 1) with two
elements per set. Let’s first determine to which set each block address maps:

Block adress

0 (O modulo 2) =0
6 {6 modulo 2) =0
8 (8 modulo 2) =0

Because we have a choice of which entry in a set to replace on a miss, we need
a replacement rule. Set-associative caches usually replace the least recently
used block within a set; that is, the block that was used furthest in the past



is replaced. (We will discuss other replacement rules in more detail shortly.)
Using this replacement rule, the contents of the set-associative cache after each
reference looks like this:

Address of memory Hit Contents of cache blocks after reference
blockaccossod | ormiss | Set0 | Seto | set1 | set1 |

miss Memory[0]
miss Memory[0] Memory[8]

hit Memory[0] Memory[8]
miss Memory[0] Memory{6]
miss Memory[8] Memory[6]

| Oo|w| O

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block 0. The two-way set-associative cache
has four misses, one less than the direct-mapped cache.

The fully associative cache has four cache blocks (in a single set); any
memory block can be stored in any cache block. The fully associative cache has
the best performance, with only three misses:

Address of memory Hit Contents of cache blocks after reference
block accessed or miss Block 0 Block 1 Block 2 Block 3

miss Memory[0]
miss Memory[0] Memory[8]
hit Memory[0] Memory[8]
miss Memory[0] Memory[8] | Memory[6]
hit Memory[0] Memory[8] | Memory[6]

MO ||O

For this series of references, three misses is the best we can do, because three
unique block addresses are accessed. Notice that if we had eight blocks in the
cache, there would be no replacements in the two-way set-associative cache
(check this for yourself), and it would have the same number of misses as the
fully associative cache. Similarly, if we had 16 blocks, all 3 caches would have
the same number of misses. Even this trivial example shows that cache size and
associativity are not independent in determining cache performance.
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FIGURE 5.18 The implementation of a four-way set-associative cache requires four
comparators and a 4-to-1 multiplexor. The comparators determine which element of the selected set
(if any) matches the tag. The output of the comparators is used to select the data from one of the four blocks
of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output
enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives the
output. The Output enable signal comes from the comparators, causing the element that matches to drive the
data outputs. This organization eliminates the need for the multiplexor.

Choosing Which Block to Replace

When a miss occurs in a direct-mapped cache, the requested block can go in
exactly one position, and the block occupying that position must be replaced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a fully associative cache, all blocks are
candidates for replacement. In a set-associative cache, we must choose among the
blocks in the selected set.

The most commonly used scheme is least recently used (LRU), which we used
in the previous example. In an LRU scheme, the block replaced is the one that has
been unused for the longest time. The set associative example on page 405 uses
LRU, which is why we replaced Memory(0) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a
set was used relative to the other elements in the set. For a two-way set-associative
cache, tracking when the two elements were used can be implemented by keeping
a single bit in each set and setting the bit to indicate an element whenever that
element is referenced. As associativity increases, implementing LRU gets harder; in
Section 5.8, we will see an alternative scheme for replacement.



Virtual Memory

Of course, to allow multiple virtual machines to share the same memory, we
must be able to protect the virtual machines from each other, ensuring that a
program can only read and write the portions of main memory that have been
assigned to it. Main memory need contain only the active portions of the many
virtual machines, just as a cache contains only the active portion of one program.
Thus, the principle of locality enables virtual memory as well as caches, and virtual
memory allows us to efficiently share the processor as well as the main memory.

We cannot know which virtual machines will share the memory with other
virtual machines when we compile them. In fact, the virtual machines sharing
the memory change dynamically while the virtual machines are running. Because
of this dynamic interaction, we would like to compile each program into its
own address space—a separate range of memory locations accessible only to this
program. Virtual memory implements the translation of a program’s address space
to physical addresses. This translation process enforces protection of a program’s
address space from other virtual machines.

The second motivation for virtual memory is to allow a single user program
to exceed the size of primary memory. Formerly, if a program became too large
for memory, it was up to the programmer to make it fit. Programmers divided
programs into pieces and then identified the pieces that were mutually exclusive.
These overlays were loaded or unloaded under user program control during
execution, with the programmer ensuring that the program never tried to access
an overlay that was not loaded and that the overlays loaded never exceeded the
total size of the memory. Overlays were traditionally organized as modules, each
containing both code and data. Calls between procedures in different modules
would lead to overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on
programmers. Virtual memory, which was invented to relieve programmers of
this difficulty, automatically manages the two levels of the memory hierarchy
represented by main memory (sometimes called physical memory to distinguish it

from virtual memory) and secondary storage.
In virtual memory, the address is broken into a virtual page number and a page

offset. Figure 5.26 shows the translation of the virtual page number to a physical
page number. The physical page number constitutes the upper portion of the
physical address, while the page offset, which is not changed, constitutes the lower
portion. The number of bits in the page offset field determines the page size. The
number of pages addressable with the virtual address need not match the number
of pages addressable with the physical address. Having a larger number of virtual
pages than physical pages is the basis for the illusion of an essentially unbounded
amount of virtual memory.
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FIGURE 5.25 In virtual memory, blocks of memory (called pages) are mapped from one
set of addresses (called virtual addresses) to another set (called physical addresses).
The processor generates virtual addresses while the memory is accessed using physical addresses. Both the
virtual memory and the physical memory are broken into pages, so that a virtual page is mapped to a physical
page. Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to
a physical address; in that case, the page resides on disk. Physical pages can be shared by having two virtual
addresses point to the same physical address. This capability is used to allow two different programs to share

data or code.
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FIGURE 5.26 Mapping from a virtual to a physical address. The page size is 2 = 4 KiB. The
number of physical pages allowed in memory is 2'% since the physical page number has 18 bits in it. Thus,
main memory can have at most 1 GiB, while the virtual address space is 4 GiB.

Many design choices in virtual memory systems are motivated by the high cost
of a page fault. A page fault to disk will take millions of clock cycles to process.
(The table on page 378 shows that main memory latency is about 100,000 times
quicker than disk.) This enormous miss penalty, dominated by the time to get the
first word for typical page sizes, leads to several key decisions in designing virtual

memory systems:



m Pages should be large enough to try to amortize the high access time. Sizes
from 4 KiB to 16 KiB are typical today. New desktop and server systems are
being developed to support 32 KiB and 64 KiB pages, but new embedded
systems are going in the other direction, to 1 KiB pages.

m Organizations that reduce the page fault rate are attractive. The primary
technique used here is to allow fully associative placement of pages in
memory.

m Page faults can be handled in software because the overhead will be small
compared to the disk access time. In addition, software can afford to use clever
algorithms for choosing how to place pages because even small reductions in
the miss rate will pay for the cost of such algorithms.

m Write-through will not work for virtual memory, since writes take too long.
Instead, virtual memory systems use write-back.

| Page table register |
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FIGURE 5.27 The page table is indexed with the virtual page number to obtain the
corresponding portion of the physical address. We assume a 32-bit address. The page table pointer
gives the starting address of the page table. In this figure, the page size is 2" bytes, or 4 KiB. The virtual
address space is 2*? bytes, or 4 GiB, and the physical address space is 2* bytes, which allows main memory
of up to 1 GiB. The number of entries in the page table is 2%, or 1 million entries. The valid bit for each entry
indicates whether the mapping is legal. If it is off, then the page is not present in memory. Although the
page table entry shown here need only be 19 bits wide, it would typically be rounded up to 32 bits for ease of
indexing. The extra bits would be used to store additional information that needs to be kept on a per-page
basis, such as protection.



Page Faults

If the valid bit for a virtual page is off, a page fault occurs. The operating system
must be given control. This transfer is done with the exception mechanism, which
we saw in Chapter 4 and will discuss again later in this section. Once the operating
system gets control, it must find the page in the next level of the hierarchy (usually
flash memory or magnetic disk) and decide where to place the requested page in
main memory.

The virtual address alone does not immediately tell us where the page is on disk.
Returning to our library analogy, we cannot find the location of a library book on
the shelves just by knowing its title. Instead, we go to the catalog and look up the
book, obtaining an address for the location on the shelves, such as the Library of
Congress call number. Likewise, in a virtual memory system, we must keep track
of the location on disk of each page in virtual address space.

Because we do not know ahead of time when a page in memory will be replaced,
the operating system usually creates the space on flash memory or disk for all the
pages of a process when it creates the process. This space is called the swap space.
At that time, it also creates a data structure to record where each virtual page is
stored on disk. This data structure may be part of the page table or may be an
auxiliary data structure indexed in the same way as the page table. Figure 5.28

shows the organization when a single table holds either the physical page number
or the disk address.

The operating system also creates a data structure that tracks which processes
and which virtual addresses use each physical page. When a page fault occurs,
if all the pages in main memory are in use, the operating system must choose a
page to replace. Because we want to minimize the number of page faults, most
operating systems try to choose a page that they hypothesize will not be needed
in the near future. Using the past to predict the future, operating systems follow
the least recently used (LRU) replacement scheme, which we mentioned in Section
5.4. The operating system searches for the least recently used page, assuming that
a page that has not been used in a long time is less likely to be needed than a more
recently accessed page. The replaced pages are written to swap space on the disk.
In case you are wondering, the operating system is just another process, and these
tables controlling memory are in memory; the details of this seeming contradiction
will be explained shortly.
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FIGURE 5.28 The page table maps each page in virtual memory to either a page in main
memory or a page stored on disk, which is the next level in the hierarchy. The virtual page
number is used to index the page table. If the valid bit is on, the page table supplies the physical page number
(i.e., the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off, the
page currently resides only on disk, at a specified disk address. In many systems, the table of physical page
addresses and disk page addresses, while logically one table, is stored in two separate data structures. Dual
tables are justified in part because we must keep the disk addresses of all the pages, even if they are currently
in main memory. Remember that the pages in main memory and the pages on disk are the same size.

Elaboratlion: With a 32-bit virtual address, 4 KiB pages, and 4 bytes per page table
entry, we can compute the total page table size:

32

Number of page table entries = oz = 220
bytes
Size of page table = 2°° page table entries X 2° vt = 4 MiB
page table entry

That is, we would need to use 4 MiB of memory for each program in execution at any
time. This amount is not so bad for a single process. What if there are hundreds of
processes running, each with their own page table? And how should we handle 64-bit
addresses, which by this calculation would need 252 words?



Making Address Translation Fast: the TLB

Since the page tables are stored in main memory, every memory access by a program
can take at least twice as long: one memory access to obtain the physical address
and a second access to get the data. The key to improving access performance is to
rely on locality of reference to the page table. When a translation for a virtual page
number is used, it will probably be needed again in the near future, because the
references to the words on that page have both temporal and spatial locality.

Accordingly, modern processors include a special cache that keeps track of recently
used translations. This special address translation cache is traditionally referred to as
a translation-lookaside buffer (TLE), although it would be more accurate to call it
a translation cache. The TLB corresponds to that little piece of paper we typically use
to record the location of a set of books we look up in the card catalog; rather than
continually searching the entire catalog, we record the location of several books and
use the scrap of paper as a cache of Library of Congress call numbers.

Figure 5.29 shows that each tag entry in the TLB holds a portion of the virtual
page number, and each data entry of the TLB holds a physical page number.
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FIGURE 5.29 The TLB acts as a cache of the page table for the entries that map to
physical pages only. The TLB contains a subset of the virtual-to-physical page mappings that are in the
page table. The TLB mappings are shown in color. Because the TLB is a cache, it must have a tag field. If there
is no matching entry in the TLB for a page, the page table must be examined. The page table either supplies a
physical page number for the page (which can then be used to build a TLB entry) or indicates that the page
resides on disk, in which case a page fault occurs. Since the page table has an entry for every virtual page, no
tag field is needed; in other words, unlike a TLB, a page table is not a cache.



Some typical values for a TLB might be

m TLB size: 16-512 entries

m Block size: 1-2 page table entries (typically 4-8 bytes each)
m Hit time: 0.5-1 clock cycle

m Miss penalty: 10-100 clock cycles

m Miss rate: 0.01%-1%

Designers have used a wide variety of associativities in TLBs. Some systems use
small, fully associative TLBs because a fully associative mapping has a lower miss
rate; furthermore, since the TLB is small, the cost of a fully associative mapping is
not too high. Other systems use large TLBs, often with small associativity. With
a fully associative mapping, choosing the entry to replace becomes tricky since
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB
misses are much more frequent than page faults and thus must be handled more
cheaply, we cannot afford an expensive software algorithm, as we can for page faults.
As a result, many systems provide some support for randomly choosing an entry
to replace. We'll examine replacement schemes in a little more detail in Section 5.8.

Integrating Virtual Memory, TLBs, and Caches

Our virtual memory and cache systems work together as a hierarchy, so that data
cannot be in the cache unless it is present in main memory. The operating system
helps maintain this hierarchy by flushing the contents of any page from the cache
when it decides to migrate that page to disk. At the same time, the OS modifies the
page tables and TLB, so that an attempt to access any data on the migrated page
will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and
sent to the cache where the appropriate data is found, retrieved, and sent back to
the processor. In the worst case, a reference can miss in all three components of the
memory hierarchy: the TLB, the page table, and the cache. The following example
illustrates these interactions in more detail.



FIGURE 5.20 The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity
FastMATH. This figure shows the organization of the TLB and the data cache, assuming a 4 KiB page size. This diagram focuses on a read;
Figure 5.31 describes how to handle writes. Note that unlike Figure 5.12, the tag and data RAMs are split. By addressing the long but narrow
data RAM with the cache index concatenated with the block offset, we select the desired word in the block without a 16:1 multiplexor. While
the cache is direct mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against
the virtual page number, since the entry of interest can be anywhere in the TLB. (See content addressable memories in the Elaboration on
page 408.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical page number together with bits from
the page offset form the index that is used to access the cache.

Virtual addreco
T TR |- - PR AR A e s R 14 13 12 11 10 Qeevveneen 3210
| Virtual page numbar | Paga offset |
[Z0 i Tz
Vald Diry Tag Prysical page number
S [cr=
Tent ST 8‘_
O —
S 5
Prysical page number ,,I Pags offset
Physical addrass tag | Cacne index ]3‘&; o
.Ige ) 4 J2
8
412 Dea
Veid Tag
Cache
(=
Cache hit
1=
Data

Implementing Protection with Virtual Memory

Perhaps the most important function of virtual memory today is to allow sharing of
a single main memory by multiple processes, while providing memory protection
among these processes and the operating system. The protection mechanism must
ensure that although multiple processes are sharing the same main memory, one
renegade process cannot write into the address space of another user process or into
the operating system either intentionally or unintentionally. The write access bit in
the TLB can protect a page from being written. Without this level of protection,
computer viruses would be even more widespread.



Interrupts

Defn: an event external to the currently
executing process that causes a change in
the normal flow of instruction execution;
usually generated by hardware devices
external to the CPU

* From “"Design and Implementation of the
FreeBSD Operating System”, Glossary

* Key point is that interrupts are

asynchronous w.r.t. current process

« Typically indicate that some device needs service

Why Interrupts?

People like connecting devices
+ A computer is much more than the CPU
* Keyboard, mouse, screen, disk drives
+ Scanner, printer, sound card, camera, etc.
These devices occasionally need CPU service
+ But we can't predict when
External events typically occur on a macroscopic
timescale
*+ we want to keep the CPU busy between events
““"Need away for CPU to find out devices need
attention



Possible Solution: Polling

* CPU periodically checks each device to see
if it needs service
* takes CPU time even when no requests pending

* overhead may be reduced at expense of
response time

can be efficient if events arrive rapidly

“Polling is like picking up your phone every few
seconds to see if you have acall. "

Alternative: Interrupts

* Give each device a wire (interrupt line) that
it can use to signal the processor

* When interrupt signaled, processor executes a
routine called an interrupt handler to deal with
the interrupt

* No overhead when no requests pending

i;‘__--f—"“ Device I
Interrupt | i T
Controller;i‘. Mty _’
"\ Device |

‘ Device |

Polling vs. Interrupts

Maskable

"Polling is like picking up your phone every few
seconds to see if you have a call. Interrupts
are like waiting for the phone to ring."

* Interrupts win if processor has other work
to do and event response time is not critical

* Polling can be better if processor has to
respond to an event ASAP

* May be used in device controller that contains
dedicated secondary processor



Hardware Interrupt Handling

Details are architecture dependentl
Interrupt controller signals CPU that interrupt has
occurred, passes interrupt number

+ Interrupts are assigned priorities to handle simultaneous
interrupts

+ Lower priority interrupts may be disabled during service

- CPU senses (check52 interrupt request line after
every instruction; if raised, then:

+ uses interrupt number to determine which handler to start
+ interrupt vector associates handlers with interrupts

* Basic program state saved (as for system call)

* CPU jumps to interrupt handler

When interrupt done, program state reloaded and
program resumes

Software Interrupt Handling

* Typically two parts to interrupt handling
* The part that has to be done immediately
* So that device can continue working
* The part that should be deferred for later
* So that we can respond to the device faster

» So that we have a more convenient execution
context
+ What does that mean?
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. Post MCQ Test

The techniques which move the program blocks to or from the physical memory
is called as
a) Paging
b) Virtual memory organisation
c) Overlays
d) Framing
An interrupt breaks the execution of instructions and diverts its execution to
a) Interrupt service routine
b) Counter word register
c) Execution unit
d) control unit
is used to implement virtual memory organisation.
a) Page table
b) Frame table
c) MMU
d) None of the mentioned
The main aim of virtual memory organisation is
a) To provide effective memory access
b) To provide better memory transfer
c) To improve the execution of the program
d) All of the mentioned
The virtual memory basically stores the next segment of data to be executed on
the
a) Secondary storage
b) Disks
c) RAM
d) ROM

Parallelism in Computer Architecture

1. Objectives:

Learn the concepts of parallel processing, pipelining.

Understand the architecture and functionality of central processing
unit

Discuss about different types of peripheral devices of computer
Learn the different types of serial communication techniques.
Explain different pipelining processes.

AN

AN



2. OUTCOMES:
v Learn the concepts of parallel processing, pipelining and interprocessor
communication
v" Discuss parallel processing technique and unconventional architectures

3. Pre Test- MCQ type

1. Execution of several activities at the same time.
a) Processing

b) parallel processing

c) serial processing

d) multitasking

Answer: parallel processing

2. A parallelism based on increasing processor word size.
a) Increasing

b) Count based

c) Bit based

d) Bit level

Answer: Bit level

3. The pipelining process is also called as
a) Superscalar operation

b) Assembly line operation

c) Von Neumann cycle

d) None of the mentioned

Answer: Assembly line operation

4. To increase the speed of memory access in pipelining, we make use of

a) Special memory locations
b) Special purpose registers
c) Cache

d) Buffers

Answer: Cache



4. Parallelism

4.1 Introduction

Why Parallel Architecture?

v

v

Parallel computer architecture adds a new dimension in the development of
computer system by using more and more number of processors.
In principle, performance achieved by utilizing large number of processors is

higher than the performance of a single processor at a given point of time.

Parallel Processing

v

Parallel processing can be described as a class of techniques which enables the
system to achieve simultaneous data-processing tasks to increase the
computational speed of a computer system.

A parallel processing system can carry out simultaneous data-processing to achieve
faster execution time.

For instance, while an instruction is being processed in the ALU component of the
CPU, the next instruction can be read from memory.

The primary purpose of parallel processing is to enhance the computer processing
capability and increase its throughput,

A parallel processing system can be achieved by having a multiplicity of functional
units that perform identical or different operations simultaneously.

The data can be distributed among various multiple functional units.

The following diagram shows one possible way of separating the execution unit
into eight functional units operating in parallel.

The operation performed in each functional unit is indicated in each block if the

diagram:
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v The adder and integer multiplier performs the arithmetic operation with integer
numbers.

v The floating-point operations are separated into three circuits operating in parallel.

v The logic, shift, and increment operations can be performed concurrently on
different data.

v All units are independent of each other, so one number can be shifted while

another number is being incremented.



v’ Parallel computers can be roughly classified according to the level at which the
hardware supports parallelism, with multi-core and multi-processor computers
having multiple processing elements within a single machine.

v In some cases parallelism is transparent to the programmer, such as in bit-level or
instruction-level parallelism.

v’ But explicitly parallel algorithms, particularly those that use concurrency, are more
difficult to write than sequential ones, because concurrency introduces several
new classes of potential software bugs, of which race conditions are the most
common.

v" Communication and synchronization between the different subtasks are typically

some of the greatest obstacles to getting optimal parallel program performance.

Advantages of Parallel Computing over Serial Computing are as follows:
1. It saves time and money as many resources working together will reduce the
time and cut potential costs.
2. It can be impractical to solve larger problems on Serial Computing.
3. It can take advantage of non-local resources when the local resources are finite.
4. Serial Computing ‘wastes’ the potential computing power, thus Parallel

Computing makes better work of hardware.

Types of Parallelism:

1. Bit-level parallelism: It is the form of parallel computing which is based on the
increasing processor’s size. It reduces the number of instructions that the system
must execute in order to perform a task on large-sized data.
Example: Consider a scenario where an 8-bit processor must compute the sum of
two 16-bit integers. It must first sum up the 8 lower-order bits, then add the 8
higher-order bits, thus requiring two instructions to perform the operation. A 16-

bit processor can perform the operation with just one instruction.



2. Instruction-level parallelism: A processor can only address less than one
instruction for each clock cycle phase. These instructions can be re-ordered
andGrouped which are later on executed concurrently without affecting the result of the
program. This is called instruction-level parallelism.

3. Task Parallelism: Task parallelism employs the decomposition of a task into
subtasks and then allocating each of the subtasks for execution. The processors
perform execution of sub tasks concurrently.

4. Data-level parallelism (DLP) — Instructions from a single stream operate
concurrently on several data — Limited by non-regular data manipulation

patterns and by memory bandwidth

Architectural Trends
v" When multiple operations are executed in parallel, the number of cycles needed to
execute the program is reduced.
v" However, resources are needed to support each of the concurrent activities.
v" Resources are also needed to allocate local storage.
v" The best performance is achieved by an intermediate action plan that uses
resources to utilize a degree of parallelism and a degree of locality.
v Generally, the history of computer architecture has been divided into four
generations having following basic technologies -
e Vacuum tubes
e Transistors
e Integrated circuits
e VLS
v Till 1985, the duration was dominated by the growth in bit-level parallelism.
v’ 4-bit microprocessors followed by 8-bit, 16-bit, and so on.
v" To reduce the number of cycles needed to perform a full 32-bit operation, the
width of the data path was doubled. Later on, 64-bit operations were introduced.
v The growth in instruction-level-parallelism dominated the mid-80s to mid-90s.
v" The RISC approach showed that it was simple to pipeline the steps of instruction

processing so that on an average an instruction is executed in almost every cycle.



v" Growth in compiler technology has made instruction pipelines more productive.

v In mid-80s, microprocessor-based computers consisted of

e An integer processing unit
o Afloating-point unit
e A cache controller
e SRAMs for the cache data
o Tag storage
v As chip capacity increased, all these components were merged into a single chip.
v Thus, a single chip consisted of separate hardware for integer arithmetic, floating
point operations, memory operations and branch operations.
v' Other than pipelining individual instructions, it fetches multiple instructions at a
time and sends them in parallel to different functional units whenever possible.

This type of instruction level parallelism is called superscalar execution.

FLYNN'S CLASSIFICATION
v" Flynn's taxonomy is a specific classification of parallel computer architectures that
are based on the number of concurrent instruction (single or multiple) and data
streams (single or multiple) available in the architecture.
v The four categories in Flynn's taxonomy are the following:
1. (SISD) single instruction, single data
2. (SIMD) single instruction, multiple data
3. (MISD) multiple instruction, single data
4. (MIMD) multiple instruction, multiple data
v’ Instruction stream: is the sequence of instructions asY executed by the machine
v Data Stream is a sequence of data including input, or partialY or temporary result,
called by the instruction Stream.
v’ Instructions are decoded by the control unit and then ctrl unit send the
instructions to the processing units for execution. e

v Data Stream flows between the processors and memory bi directionally.
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v In SISD, machine instructions are processed in a sequential manner and computers

adopting this model are popularly called sequential computers.

v Most conventional comp v ters have SISD architecture. All the instructions and

data to be processed have to be stored in primary memory.

v" The speed of the processing element in the SISD model is limited (dependent) by

the rate at which the computer can transfer information internally.



v" Dominant representative SISD systems are IBM PC, workstations.

SIMD
* An SIMD system is a multiprocessor machine capable of executing the same

instruction on all the CPUs but operating on different data streams

Vector/Array computers
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v' Machines based on an SIMD model are well suited to scientific computing since
they involve lots of vector and matrix operations.
v So that the information Can be passed to all the processing elements (PEs)

Organized data elements of vectors can be divided into multiple sets (N-sets for N PE

systems) and each PE can process one data set.

v" Dominant representative SIMD systems are Cray’s vector processing machine.

MISD
v" An MISD computing system is a multiprocessor machine capable Of executing
Different instructions on Different PEs but all of them operating on the same

dataset.
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v' The system performs different operations on the same data set. Machines built
using the MISD model are not useful in most of the application, a few machines

are built, but none of them are available commercially.

MIMD

v" An MIMD system is a multiprocessor machine which is capable of executing

multiple instructions on multiple data sets.

Message Passing

Shared memory/distributed memory

= Uniform Memory Access (UMA)
» Non-Uniform Memory Access (NUMA)
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e shared-memory MIMD and

e distributed-memory MIMD

Based on the way PEs are coupled to the main memory.

In the shared memory MIMD model (tightly coupled multiprocessor systems), all the PEs are
connected to a single global memory and they all have access to it. The communication between
PEs in this model takes place through the shared memory, modification of the data stored in the
global memory by one PE is visible to all other PEs. Dominant representative shared memory

MIMD systems are Silicon Graphics machines and Sun/IBM’s SMP (Symmetric Multi-Processing).

In Distributed memory MIMD machines (loosely coupled multiprocessor systems) all PEs have a
local memory. The communication between PEs in this model takes place through the
interconnection network (the inter process communication channel, or IPC). The network

connecting PEs can be configured to tree, mesh or in accordance with the requirement.

VECTOR ARCHITECTURES

v" A multithreaded CPU is not a parallel architecture, strictly speaking; multithreading
is obtained through a single CPU, but it allows a programmer to design and develop
applications as a set of programs that can virtually execute in parallel: namely,
threads.

v" Multithreading is solution to avoid waiting clock cycles as the missing data is
fetched: making the CPU manage more peer-threads concurrently; if a thread gets
blocked, the CPU can execute instructions of another thread, thus keeping
functional units busy.

v Each thread must have a private Program Counter and a set of private registers,
separate from other threads.

v In a traditional scalar processor, the basic data type is an n-bit word.



The architecture often exposes a register file of words, and the instruction set is
composed of instructions that operate on individual words.

In a vector architecture, there is support of a vector datatype, where a vector is a
collection of VL n-bit words (VL is the vector length).

There may also be a vector register file, which was a key innovation of the Cray
architecture.

Previously, vector machines operated on vectors stored in main memory.

Figures 1 and 2 illustrate the difference between vector and scalar data types, and
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Figure 1: (A): a 64-bit word, and (B): a vector of 8 64-bit words
the operations that can be performed on them.
Vector load/store instructions provide the ability to do strided and scatter / gather
memory accesses, which take data elements distributed throughout memory and
pack them into sequential vectors/streams placed in vector/stream registers.
This promotes data locality.
It results in less data pollution, since only useful data is loaded from the memory
system.
It provides latency tolerance because there can be many simultaneous outstanding
memory accesses.

Vector instructions such as VLD and VST provide this capability.
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Figure 2: Difference between scalar and vector add instructions

HARDWARE MULTITHREADING

Multithreading
e A mechanism by which the instruction streams is divided into several smaller
streams

(threads) and can be executed in parallel is called multithreading.

Hardware Multithreading

e Increasing utilization of a processor by switching to another thread when one
thread is stalled is known as hardware multithreading.

Thread
e A thread includes the program counter, the register state, and the
stack. It is a lightweight process; whereas threads commonly share a single
address space, processes don't.
Thread Switch
e The act of switching processor control from one thread to another within the

same process. It is much less costly than a processor switch.



Process
e A process includes one or more threads, the address space, and the operating
system state. Hence, a process switch usually invokes the operating system,

but not a thread switch.

Types of Multi-threading
1. Fine-grained Multithreading
2. Coarse-grained Multithreading
3. Simultaneous Multithreading

Coarse-grained Multithreading
A version of hardware multithreading that implies switching between threads only after

significant events, such as a last-level cache miss.

e This change relieves the need to have thread switching be extremely fast and
is much less likely to slow down the execution of an individual thread, since
instructions from other threads will only be issued when a thread
encounters a costly stall.

Advantage

e To have very fast thread switching.
e Doesn't slow down thread.

Disadvantage

e |tis hard to overcome throughput losses from shorter stalls, due to pipeline
start -upcosts.

* Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline
must be emptied.

* New thread must fill pipeline before instructions can complete.

e Due to this start-up overhead, coarse-grained multithreading is much more
useful for reducing the penalty of high-cost stalls, where pipeline refill is

negligible compared to the stall time.

Fine-grained Multithreading



* Aversion of hardware multithreading that implies switching between
threads after every instruction resulting in interleaved execution of multiple
threads. It switches from one thread to another at each clock cycle.

e This interleaving is often done in a round-robin fashion, skipping any threads

that are stalled at that clock cycle.
To make fine-grained multithreading practical, the processor must be able to switch

threads on every clock cycle.

Advantage

e Vertical waste is eliminated.

e Pipeline hazards cannot arise.

e Zero switching overhead

* Ability to hide latency within a thread i.e., it can hide the throughput losses
that arise from both short and longstalls.

* Instructions from other threads can be executed when one thread stalls.

* High execution efficiency

* Potentially less complex than alternative high performance processors.

Disadvantage

e Clock cycles are wasted if a thread has little operation to execute.

* Needs a lot of threads to execute.

e |tis expensive than coarse-grained multithreading.

* |t slows down the execution of the individual threads, since a thread that is
ready to execute without stalls will be delayed by instructions from other
threads.

Simultaneous multithreading (SMT)

e |t is a variation on hardware multithreading that uses the resources of a
multiple-issue, dynamically scheduled pipelined processor to exploit thread-
level parallelism at the same time it exploits instruction level parallelism.

e The key insight that motivates SMT is that multiple-issue processors often
have more functional unit parallelism available than most single threads can

effectively use.



Since SMT relies on the existing dynamic mechanismes, it does not switch resources every

cycle.
e Instead, SMT is always executing instructions from multiple threads, to
associate instruction slots and renamed registers with their proper threads.

Advantage

e Itis ability to boost utilization by dynamically scheduling units  functional
among multiple threads.
e ltincreases hardware design facility.

e It produces better performance and add resources to a fine grained manner.
Disadvantage

It cannot improve performance if any of the shared resources are the limiting

bottlenecks for the performance.

MULTICORE AND OTHER SHARED MEMORY MULTIPROCESSORS
Multiprocessor: A computer system with at least two processors

e Multicore: More than one processor available within a single chip.
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The conventional multiprocessor system used is commonly referred as shared memory

multiprocessor system.

e Shared Memory Multiprocessor (SMP) is one Offers  the
that

Programmer a single is  Physical address space across all processors which case for

nearly always the multicore chips.
e Processors communicate through shared variables in memory, with all

processors capable of accessing any memory location via loads and stores.



e Systems can still run independent jobs in their own virtual address spaces,
even if they all share a physical address space.
e Use of shared data must be coordinated via synchronization primitives

(locks) that allow access to data to only one processor at a time
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SHARED MEMORY PROCESSOR DISTRIBUTED MEMORY PROCESSOR
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Shared Memory Multiprocessor System.[Tightly coupled processor

e The conventional multiprocessor system used is commonly referred as
shared memory multiprocessor system.

e Single address space shared by all processors. Because every processor
communicates through a shared global memory.

e For high speed real time processing, these systems are preferable as
their throughput is high as compared to loosely coupled systems

e In tightly coupled system organization, multiple processors share a
global main memory, which may have many modules.

* Tightly coupled systems use a common bus, crossbar, or multistage

network to connect processors, peripherals, and memories.
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Figure : Tighily coupled system organization



Two common styles of implementing Shared Memory Multiprocessors (SMP) are,

Uniform memory access (UMA) multiprocessors

e In this model, Main memory is uniformly shared by all

Processors in multiprocessor systems and each processor has equal

access time to shared memory.

* This model is used for time-sharing applications in a multi user environment

Tightly-coupled systems (high degree of resource sharing) suitable for general

purpose and time-sharing applications by multiple users
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Physical memory uniformly shared by all processors, with equal access time to all
words.

e Processors may have ocal cache memories. Peripherals also shared in some

fashion.

e UMA architecture models are of two 20types,

Symmetric:
e All processors have equal access to all peripheral
devices. All processors are identical.
Asymmetric:
e One processor (master) executes the operating system other

processors may be of different types and may be dedicated

to special tasks.



Non Uniform Memory Access (NUMA) multiprocessors
In shared memory multiprocessor systems, local memories can be connected
with every processor. The collections of all local memories form the global
memory being shared.
In this way, global memory is distributed to all the processors. In this case, the
access to a local memory is uniform for its corresponding processor as it is
attached to the local memory.
But if one reference is to the local memory of some other remote processor,
then the access is not uniform.
It depends on the location of the memory. Thus, all memory words are not
accessed uniformly. All local memories form a global address space accessible
by all processors
Programming NUMAs are harder but NUMAs can scale to larger sizes and have
lower latency to local memory
Memory is common to all the processors. Processors easily communicate by
means of shared variables.
These systems differ in how the memory and peripheral resources are
shared or distributed

The access time varies with the location of the memory word.

Mem

‘ Interconnection network ‘

Distributed Memory (NUMA)
e Cache Only Memory Architecture. The COMA model is a special case of the
NUMA



Here all the distributed memories are converted to cache memories.
* The local memories for the processor at each node are used as cache

instead of actual
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Distributed Memory [Loosely Coupled Systems

* These systems do not share the global memory because shared memory
concept gives rise to the problem of memory conflicts, which in turn slows
down the execution of instructions.

* Therefore, to alleviate this problem, each processor in loosely coupled
systems is having a large local memory (LM), which is not shared by any
other processor.

* Thus, such systems have multiple processors with their own local
memory and a set of I/O devices.

* This set of processor, memory and 1/O devices makes a computer system.
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Figure 14: Loosely coupled system organisation



v Therefore, these systems are also called multi-computer systems.

v' These computer systems are connected together via message passing
interconnection network through which processes communicate by passing
messages to one another.

Since every computer system or node in multicomputer systems has a separate
memory, they are called distributed multicomputer systems. These are also

called loosely coupled systems.

GPU (Graphics Processing Unit)

v A graphics processing unit (GPU) is a computer chip that performs rapid
mathematical calculations, primarily for the purpose of rendering images.

v In the early days of computing, the central processing unit (CPU) performed these
calculations.

v" As more graphics-intensive applications such as AutoCAD were developed,
however, their demands put strain on the CPU and degraded performance.

v' GPUs came about as a way to offload those tasks from CPUs and free up processing
power.

v Today, graphics chips are being adapted to share the work of CPUs and train deep
neural networks for Al applications.

v" A GPU may be found integrated with a CPU on the same circuit, on a graphics card
or in the motherboard of a personal computer or server.

v" NVIDIA, AMD, Intel and ARM are some of the major players in the GPU market.

GPU vs. CPU

v" A GPU is able to render images more quickly than a CPU because of its parallel
processing architecture, which allows it to perform multiple calculations at the
same time.

v" A single CPU does not have this capability, although multicore processors can
perform calculations in parallel by combining more than one CPU onto the same

chip.



v In general, a GPU is designed for data-parallelism and applying the same operation

to multiple data-items (SIMD).

v" Most CPUs have between four and eight cores, though some have up to 32 cores.

v Each core can process its own tasks, or threads.
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GPU computing is the use of a GPU (graphics processing unit) as a co- processor
to accelerate CPUs for general-purpose scientific and engineering computing.
The GPU accelerates applications running on the CPU by offloading some of the
compute-intensive and time consuming portions of the code.

The rest of the application still runs on the CPU. From a user's perspective, the
application runs faster because it's using the massively parallel processing
power of the GPU to boost performance. This is known as "heterogeneous" or
"hybrid" computing.

A CPU consists of four to eight CPU cores, while the GPU consists of hundreds of
smaller cores.

Together, they operate to crunch through the data in the application.

This massively parallel architecture is what gives the GPU its high compute
performance.

There are a number of GPU-accelerated applications that provide an easy way

to access high-performance computing (HPC).

CLUSTER SYSTEM

v
v

Clustered systems are similar to parallel systems as they both have multiple CPUs.

However a major difference is that clustered systems are created by two or more
individual computer systems merged together.
Basically, they have independent computer systems with a common storage and

the systems work together.
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The clustered systems are a combination of hardware clusters and software clusters. The hardware

clusters help in sharing of high performance disks between the systems. The software clusters

makes all the systems work together.

Each node in the clustered systems contains the cluster software. This software monitors the
cluster system and makes sure it is working as required. If any one of the nodes in the clustered

system fail, then the rest of the nodes take control of its storage and resources and try to restart.

Types of Clustered Systems
* High performance Cluster
— 1000 nodes, high level parallel process
* Load Balancing Cluster
— Balance the work loads
* Web service Cluster
— Web pages & applications

* Storage Cluster



— Parallel file systems
* Database Cluster

— Oracle parallel server

WSC

v' Warehouse-scale computers (WSCs) form the foundation of internet services that
people use for search, social networking, online maps, video sharing, online
shopping, email, cloud computing, etc.

v The ever increasing popularity of internet services has necessitated the creation of
WSCs in order to keep up with the growing demands of the public.

v" Although WSCs may seem to be large datacenters, their architecture and operation
are different from datacenters.

v" The WSC is a descendant of the supercomputer. Today’s WSCs act as one giant
machine.

v' The main parts of a WSC are the building with the electrical and cooling
infrastructure, the networking equipment and the servers, about 50000 to 100000
of them.

v The costs are of the order of $150M to build such an infrastructure. WSCs have
many orders of magnitude more users than high performance computing and play

a very important role today.

Message Passing Multiprocessor
Communicating between multiple processors by explicitly sending and receiving information.
Send message routine: A routine used by a processor in machines with private
memories to pass a message to another processor.

 Receive message routine: A routine used by a processor in machines with

private memories to accept a message from another processor.



FProcessing Element 1 Processing Element n

Local Local

Proce=s=ar Proces=sor

Memonys - = -

Mermore

Message Transfer Swstem (AT S

* Distributed memory multicomputer system consists of multiple computers, known as
nodes, inter-connected by message passing network.
* Each node acts as an autonomous computer having a processor, a local memory and

sometimes I/O devices.

*In this case, all local memories are private and are accessible only to the local
processors.

* This is why, the traditional machines are called no-remote-memory-access (NORMA)

machines.
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6. Post MCQ Test

6. Which of the following processor has a fixed length of instructions?
a) CISC
b) RISC
c) EPIC
d) Multi-core
7. Which one is not benefit of multiprocessors?
a) Multiple independent jobs can be made to operate in parallel
b) A single job can be partitioned into multiple parallel tasks
c) Multiple jobs can be made to operate in serial
c) All are benefits
8. MISD data stream is the abbreviation of
a)Multiple instruction single data stream
b) Multiple instruction streams, single data stream
¢) Multiple instruction streams, data stream
d) Many instruction streams, single data stream
9. Data-level parallelism/task-level parallelism in a tightly coupled hardware which
allows interaction among parallel threads, are processed by
a) instruction-Level Parallelism
b) Request-Level Parallelism
c) Thread-Level Parallelism
d) Vector Architectures and Graphic Processor Units
10. An alternative towards the fine-grained multithreading, the devised technique was
a) Buffer-grained multi-threading
b) Miss-grained multi-threading
c) Coarse-grained multi-threading
d) Coarse-grained single threading
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