
Lecture notes for Overview &Instructions in Computer Architecture

Subject : Computer Architecture

 Prepared by : Dr.J.Vinothkumar

1. Objectives:

 Discuss the basic concepts and structure of computers.
 Summarize the functional units of computer.
 Analyze some of the design issues in terms of speed, technology, cost, performance.
 Explain different types of logic gates.
 Minimize the logic expressions.

2. Prerequisite:

 Digital System Design, Microprocessors & Microcontrollers

3. OUTCOMES:

 Understand the theory and architecture of central processing unit.
 Analyze some of the design issues in terms of speed, technology, cost, performance

 Design a simple CPU with applying the theory concepts.

4. Pre Test- MCQ type

1. Which of the following is not the form of registers?

a) Accumulator

b) General purpose register

c) Special purpose register

d) Cache

2. The ALU makes use of _______ to store the intermediate results.

a) Accumulators

b) Registers

c) Heap

d) Stack

3. The only language which the computer understands is ______________

a) Assembly Language

b) Binary Language

c) BASIC

d) C Language

4. CPU does not perform the operation

 A. data transfer

B. logic operation

C. arithmetic operation

D. all of above

5. The control unit controls other units by generating ___________

a) Control signals

b) Timing signals

c) Transfer signals

d) Command Signals

5. OVERVIEW &INSTRUCTIONS

5.1 Introduction

 8 GREAT IDEAS:

1. Design for Moore’s Law

The one constant for computer designers is rapid change, which is driven largely by

Moore's Law. It states that integrated circuit resources double every 18–24 months. Moore's Law

resulted from a 1965 prediction of such growth in IC capacity made by Gordon Moore, one of the

founders of Intel. As computer designs can take years, the resources available per chip can easily d

double or quadruple between the start and finish of the project. Like a skeet shooter, computer

architects must anticipate where the technology will be when the design finishes rather than design

for where it starts. We use an "up and to the right" Moore's Law graph to represent designing for rapid

change.

2. Use Abstraction to Simplify Design

Both computer architects and programmers had to invent techniques to make

themselves more productive, for otherwise design time would lengthen as dramatically as resources

grew by Moore's Law. A major productivity technique for hardware and software is to use abstractions

to represent the design at different levels of representation; lower -level details are hidden to offer a

simpler model at higher levels. We'll use the abstract painting icon to represent this second great idea.

3. Make the common case fast

Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is often simpler than the rare case and hence is often
easier to enhance. This common sense advice implies that you know what the common case is, which is
only possible with careful experimentation and measurement. We use a sports car as the icon for making
the common case fast, as the most common trip has one or two passengers, and it's surely easier to make
a fast sports car than a fast minivan.

4. Performance via parallelism

Since the dawn of computing, computer architects have offered designs that get

more performance by performing operations in parallel. We'll see many examples of parallelism in this
book. We use multiple jet engines of a plane as our icon for parallel performance.

5. Performance via pipelining

A particular pattern of parallelism is so prevalent in computer architecture that it merits

its own name: pipelining. For example, before fire engines, a "bucket brigade" would respond to a fire,
which many cowboy movies show in response to a dastardly act by the villain. Th e townsfolk form a

human chain to carry a water source to fi re, as they could much more quickly move buckets up the
chain instead of individuals running back and forth. Our pipeline icon is a sequence of pipes, with each

section representing one stage of the pipeline.

6. Performance via prediction

Following the saying that it can be better to ask for forgiveness than to ask for permission, the next great
idea is prediction. In some cases it can be faster on average to guess and start working rather than wait
until you know for sure, assuming that the mechanism to recover from a misprediction is not too
Expensive and your prediction is relatively accurate. We use the fortune-teller's crystal ball as our
prediction icon.

7. Hierarchy of memories

Programmers want memory to be fast, large, and cheap, as memory speed often shapes
performance, capacity limits the size of problems that can be solved, and the cost of memory today is
often the majority of computer cost. Architects have found that they can address these conflicting
demands with a hierarchy of memories, with the fastest, smallest, and most expensive memory per bit at
the top of the hierarchy and the slowest, largest, and cheapest per bit at the bottom. Caches give the
programmer the illusion that main memory is nearly as fast as the top of the hierarchy and nearly as big
and cheap as the bottom of the hierarchy. We use a layered triangle icon to represent the memory
hierarchy. The shape indicates speed, cost, and size: the closer to the top, the faster and more expensive
per bit the memory; the wider the base of the layer, the bigger the memory.

8. Dependability via redundancy

Computers not only need to be fast; they need to be dependable. Since any

physical device can fail, we make systems dependable by including redundant components that can take
over when a failure occurs and to help detect failures. We use the tractor-trailer as our icon, since the dual
tires on each side of its rear axles allow the truck to continue driving even when one tire fails.
(Presumably, the truck driver heads immediately to a repair facility so the fl at tire can be fixed, thereby
restoring redundancy!)

COMPONENTS OF COMPUTER SYSTEM

The five classic components of a computer are input, output, memory, data path, and control, with the last
two sometimes combined and called the processor. Figure 1.5 shows the standard organization of a
computer. The organization is independent of hardware technology: you can place every piece of every
computer, past and present, into one of these five categories.

Through the Looking Glass
The most fascinating I/O device is probably the graphics display. Most personal mobile devices use

liquid crystal displays (LCDs) to get a thin, low-power display. The LCD is not the source of light; instead, it
controls the transmission of light. A typical LCD includes rod-shaped molecules in a liquid that form a
twisting helix that bends light entering the display, from either a light source behind the display or less
oft en from reflected light. The rods straighten out when a current is applied and no longer bend the light.
Since the liquid crystal material is between two screens polarized at 90 degrees, the light cannot pass
through unless it is bent.

Today, most LCD displays use an active matrix that has a tiny transistor switch at each pixel to
precisely control current and make sharper images. A red-green-blue mask associated with each dot on
the display determines the intensity of the three color components in the final image; in a color active
matrix LCD, there are three transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can be represented as a
matrix of bits, called a bit map. Depending on the size of the screen and the resolution, the display matrix
in a typical tablet ranges in size from 1024 _ 768 to 2048 _1536. A color display might use 8 bits for each of
the three colors (red, blue, and green), for 24 bits per pixel, permitting millions of different colors to be
displayed.

Touchscreen

While PCs also use LCD displays, the tablets and smartphones of the Post PC era have replaced
the keyboard and mouse with touch sensitive displays, which has the wonderful user interface
advantage of users pointing directly what they are interested in rather than indirectly with a mouse.
While there are a variety of ways to implement a touch screen, many tablets today use capacitive sensing.
Since people are electrical conductors, if an insulator like glass is covered with a transparent conductor,
touching distorts the electrostatic field of the screen, which results in a change in capacitance. The is
technology can allow multiple touches simultaneously, which allows gestures that can lead to attractive
user interfaces.

Opening the Box

Figure 1.7 shows the contents of the Apple I Pad 2 tablet computer. Unsurprisingly, of the five
classic components of the computer, I/O dominates this reading device. The list of I/O devices includes a
capacitive multitouch LCD display, front facing camera, rear facing camera, microphone, headphone jack,
speakers, accelerometer, gyroscope, Wi-Fi network, and Bluetooth network. The data path, control, and

memory are a tiny portion of the components. The small rectangles in Figure 1.8 contain the devices that
drive our advancing technology, called integrated circuits and nicknamed chips. The A5 package seen in
the middle of in Figure 1.8 contains two ARM processors that operate with a clock rate
Of 1 GHz. The processor is the active part of the computer, following the instructions of a program to the
letter. It adds numbers, tests numbers, signals I/O devices to activate, and so on. Occasionally, people call
the processor the CPU, for the more bureaucratic-sounding central processor unit.

Cache memory
It consists of a small, fast memory that acts as a buffer for the DRAM memory. (The nontechnical
definition of cache is a safe place for hiding things.) Cache is built using a different memory technology,
static random access memory (SRAM). SRAM is faster but less dense, and hence more expensive, than
DRAM (see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

A Safe Place for Data

Thus far, we have seen how to input data, compute using the data, and display data. If we were to lose
power to the computer, however, everything would be lost because the memory inside the computer is
volatile—that is, when it loses power, it forgets. In contrast, a DVD disk doesn’t forget the movie when you
turn off the power to the DVD player, and is thus a nonvolatile memory technology.

Communicating with Other Computers
We’ve explained how we can input, compute, display, and save data, but there is still one missing item
found in today’s computers: computer networks. Just as the processor shown in Figure 1.5 is connected to
memory and I/O devices, networks interconnect whole computers, allowing computer users to extend the
power of computing by including communication. Networks have become so popular that they are the
backbone of current computer systems; a new personal mobile device or server without a network
interface would be ridiculed. Networked computers have several major advantages:

Communication: Information is exchanged between computers at high speeds.
Resource sharing: Rather than each computer having its own I/O devices, computers on the network can
share I/O devices.

Nonlocal access: By connecting computers over long distances, users need not be near the computer
they are using.

Networks vary in length and performance, with the cost of communication increasing according to

both the speed of communication and the distance that information travels. Perhaps the most popular
type of network is Ethernet. It can be up to a kilometer long and transfer at up to 40 gigabits per second.

Technologies for Building Processors
and Memory

Processors and memory have improved at an incredible rate, because computer designers have
long embraced the latest in electronic technology to try to win the race to design a better computer. used
over time, with an estimate of the relative performance per unit cost for each technology. Since this
technology shapes what computers will be able to do and how quickly they will evolve, we believe all
computer professionals should be familiar with the basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. The integrated circuit (IC)

combined dozens to hundreds of transistors into a single chip. When Gordon Moore predicted the
continuous doubling of resources, he was predicting the growth rate of the number of transistors per chip.
To describe the tremendous increase in the number of transistors from hundreds to millions, the adjective
very large scale is added to the term, creating the abbreviation VLSI, for very large-scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.11 shows the growth in
DRAM capacity since 1977. For decades, the industry has consistently quadrupled capacity every 3 years,
resulting in an increase in excess of 16,000 times! To understand how manufacture integrated circuits, we
start at the beginning. The manufacture of a chip begins with silicon, a substance found in sand. Because
silicon does not conduct electricity well, it is called a semiconductor. With a special chemical process, it is
possible to add materials to silicon that allow tiny areas to transform into one of three devices: ¾ excellent
conductors of electricity (using either microscopic copper or aluminum wire) been used over time, with an
estimate of the relative performance per unit cost for each technology. Since this technology shapes what
computers will be able to do and how quickly they will evolve, we believe all computer professionals
should be familiar with the basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. The integrated circuit (IC)

combined dozens to hundreds of transistors into a single chip. When Gordon Moore predicted the
continuous doubling of resources, he was predicting the growth rate of the number of transistors per
chip. To describe the tremendous increase in the number of transistors from hundreds to millions, the
adjective very large scale is added to the term, creating the abbreviation VLSI, for very large-scale
integrated circuit. This rate of increasing integration has been remarkably stable. Figure 1.11 shows
The growth in DRAM capacity since 1977. For decades, the industry has consistently quadrupled capacity
every 3 years, resulting in an increase in excess of 16,000 times! To understand how manufacture
integrated circuits, we start at the beginning. The manufacture of a chip begins with silicon, a substance
found in sand. Because silicon does not conduct electricity well, it is called a semiconductor. With a special
chemical process, it is possible to add materials to silicon that allow tiny areas to transform into one of
three devices:

 Excellent conductors of electricity (using either microscopic copper or

 Excellent insulators from electricity (like plastic sheathing or glass)

 Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combinations of

conductors, insulators, and switches manufactured in a single small package. Aluminum wire)

Performance

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease
response time, or both?
1. Replacing the processor in a computer with a faster version
2. Adding additional processors to a system that uses multiple processors for separate tasks—for
example, searching the web decreasing response time almost always improves throughput. Hence, in
case
1, both response time and throughput are improved. In case 2, no one task gets work done faster, so
only throughput increases. If, however, the demand for processing in the second case was almost

As large as the throughput, the system might force requests to queue up. In this case, increasing the
throughput could also improve response time, since it would reduce the waiting time in the queue.
Thus, in many real computer systems, changing either execution time or throughput oft en affects the
other. In discussing the performance of computers, we will be primarily concerned with response time
for the first few chapters. To maximize performance, we want to minimize response time or execution
time for some task. Thus, we can relate performance and execution time for a computer X:

The dominant technology for integrated circuits is called CMOS (complementary metal oxide

semiconductor). For CMOS, the primary source of energy consumption is so-called dynamic energy— that
is, energy that is consumed when transistors switch states from 0 to 1 and vice versa. The dynamic energy
depends on the capacitive loading of each transistor and the voltage applied:

Frequency switched is a function of the clock rate. The capacitive load per transistor is a function
of both the number of transistors connected to an output (called the fan-out) and the technology, which
determines the capacitance of both wires and transistors.

The Sea Change: The Switch from Uniprocessors to Multiprocessors

The power limit has forced a dramatic change in the design of microprocessors. Figure 1.17 shows

the improvement in response time of programs for desktop microprocessors over time. Since 2002, the
rate has slowed from a factor of 1.5 per year to a factor of 1.2 per year.

Rather than continuing to decrease the response time of a single program running on the single
processor, as of 2006 all desktop and server companies are shipping microprocessors with multiple
processors per chip, where the benefit is oft en more on throughput than on response time. To reduce
confusion between the words processor and microprocessor, companies refer to processors as “cores,”
and such microprocessors are generically called multicore microprocessors.

Hence, a “quad core” microprocessor is a chip that contains four processors or four cores. In the
past, programmers could rely on innovations in hardware, architecture, and compilers to double
performance of their programs every 18 months without having to change a line of code. Today, for
programmers to get significant improvement in response time, they need to rewrite their programs to
take advantage of multiple processors. Moreover, to get the historic benefit of running faster on new
microprocessors, programmers will have to continue to improve performance of their code as the number
of cores increases.

To reinforce how the software and hardware systems work hand in hand, we use a special section,
Hardware/Software Interface, throughout the book, with the first one appearing below. These elements
summarize important insights at this critical interface.

Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The MIPS assembly language notation add a,
b, c instructs a computer to add the two variables b and c and to put their sum in a.

This notation is rigid in that each MIPS arithmetic instruction performs only one operation and

must always have exactly three variables. For example, suppose we want to place the sum of four
variables b, c, d, and e into variable a. (In this section we are being deliberately vague about what a
“variable” is; in the next section we’ll explain in detail.)

The following sequence of instructions adds the four variables:

add a, b, c # The sum of b and c is placed in a
add a, a, d # The sum of b, c, and d is now in a
add a, a, e # The sum of b, c, d, and e is now in a

Thus, it takes three instructions to sum the four variables. The words to the right of the sharp
symbol (#) on each line above are comments for the human reader, so the computer ignores them.

MIPS ASSEMBLY LANGUAGE CODE

Operands of the Computer Hardware
One major difference between the variables of a programming language and registers is the

limited number of registers, typically 32 on current computers, like MIPS. (See Section 2.21 for the history
of the number of registers.) Thus, continuing in our top-down, stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restriction that the three
operands of MIPS arithmetic instructions must each be chosen from one of the 32 32-bit registers. The
reason for the limit of 32 registers may be found in the second of our three underlying design principles of
hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because it takes

electronic signals longer when they must travel farther. Guidelines such as “smaller is faster” are not
absolutes; 31 registers may not be faster than 32. Yet, the truth behind such observations causes
computer designers to take them seriously. In this case, the designer must balance the craving of programs
for more registers with the designer’s desire to keep the clock cycle fast. Another reason for not using
more than 32 is the number of bits it would take in the instruction format, as Section 2.5 demonstrates.

Logical Operations

Although the first computers operated on full words, it soon became clear that it was useful to
operate on fields of bits within a word or even on individual bits. Examining characters within a word, each
of which is stored as 8 bits, is one example of such an operation (see Section 2.9). It follows that
operations were added to programming languages and instruction set architectures to simplify, among
other things, the packing and unpacking of bits into words. These instructions are called logical operations.
Figure 2.8 shows logical operations in C, Java, and MIPS.

The first class of such operations is called shift s. They move all the bits in a word to the left or right,
filling the emptied bits with 0s. For example, if register $s0 contained

0000 0000 0000 0000 0000 0000 0000 1001two = 9ten

And the instruction to shift left by 4 was executed, the new value would be:

0000 0000 0000 0000 0000 0000 1001 0000two = 144ten

Instructions for Making Decisions

MIPS Addressing for 32-bit Immediate and Addresses

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there are times where

it would be convenient to have a 32-bit constant or 32-bit address. This section starts with the general
solution for large constants, and then shows the optimizations for instruction addresses used in branches
and jumps.

32-Bit Immediate Operands

Although constants are frequently short and fi t into the 16-bit field, sometimes they are bigger.
The MIPS instruction set includes the instruction load upper immediate (lui) specifically to set the upper
16 bits of a constant in a register, allowing a subsequent instruction to specify the lower 16 bits of the
constant. Figure 2.17 shows the operation of lui.

MIPS Addressing Mode Summary
Multiple forms of addressing are generically called addressing modes. Figure 2.18 shows how

operands are identified for each addressing mode. The MIPS addressing modes are the
following:

1. Immediate addressing, where the operand is a constant within the instruction itself
2. Register addressing, where the operand is a register
3. Base or displacement addressing, where the operand is at the memory location whose address
is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a constant in the

instruction

5. Pseudo direct addressing, where the jump address is the 26 bits of the instruction concatenated

with the upper bits of the PC

6. Post MCQ Test

1. _________ is the branch logic that provides decision-making capabilities in the control

unit

A. Unconditional transfer

B. Controlled transfer

C. Conditional transfer

D. None of these

2. Which of the following is used to hold running program instructions?

 a) Primary Storage

b) Virtual Storage

c) Internal Storage

 d) Minor Devices

3. When a subroutine is called, the address of the instruction following the

CALL instructions stored in/on the

a. stack pointer

b. accumulator

c. program counter

d. stack

4. When information is stored into the memory, it is known as

a. Read operation

b. Write operation

c. Polling

d. Data mining

Lecture notes for Arithmetic for Computers in Computer Architecture

1. Objectives:

 Explain different types of binary codes and its conversions.
 Define different number systems, binary addition and subtraction, 2’s

complement representation and operations with this representation.
 Understand concepts of register transfer logic
 Summarize the types of micro operations.
 Design logic circuits for different micro operations.

2. OUTCOMES:

 Define different number systems, binary addition and subtraction, 2’s
complement representation and operations with this representation

 Use appropriate tools to design verify and test the CPU architecture

3. Pre Test- MCQ type

1. The sign followed by the string of digits is called as ______

a) Significant

b) Determinant

c) Mantissa

d) Exponent

2. The 32 bit representation of the decimal number is called as ___________

a) Double-precision

b) Single-precision

c) Extended format

d) None of the mentioned

3. The result that is smaller than the smallest number obtained is referred to as

a) NaN

b) Underflow

c) Smallest

d) Mantissa

4. Which of the following is used for binary multiplication?

a) Restoring Multiplication

b) Booth’s Algorithm

c) Pascal’s Rule

d) Digit-by-digit multiplication

5. If Booth’s Multiplication is performed on the numbers 22*3, then what is 3

referred to as __________

a) accumulator

b) multiplicand

c) quotient

d) multiplier

 5. ARITHMETIC OPERATIONS

Parallelism and Computer Arithmetic: Sub word Parallelism

5. Post MCQ Test

1. Which ILP supports the ALU division?

a) Subword parallelism

b) CISC

c) Superscalar

d) VLIW

2. In 32 bit representation the scale factor as a range of ________

a) -128 to 127

b) -256 to 255

c) 0 to 255

d) None of the mentioned

3. Which of the following is not a positional number system?

a) Roman Number System

b) Octal Number System

c) Binary Number System

d) Hexadecimal Number System

4. The octal equivalent of 1100101.001010 is ______

a) 624.12

b) 145.12

c) 154.12

d) 145.21

5. Floating point representation is used to store_________

a) Boolean values
b) Whole numbers
c) Real integers
d) integers

Lecture notes for Processor Datapath and Control Units in Computer Architecture

1. Objectives:

 Summarize the Instruction execution stages.
 Explain different types of addressing modes.
 Understand concepts of Hardwired control and micro programmed control.
 Discuss different types of computer arithmetic operations.

2. OUTCOMES:

 Understand the architecture and functionality of central processing unit
 Discuss about implementation schemes of data-path and control units and

pipeline performance

3. Pre Test- MCQ type

1. The part of a processor which contains hardware necessary to perform all the

operations required by a computer:

a) Data path

b) Controller

c) Registers

d) Cache

2. What does MAR stand for?

a) Main Address Register

b) Memory Access Register

c) Main Accessible Register

d) Memory Address Register

3. PC Program counter is also called______

 a) Instruction pointer
b) memory pointer
c) data counter
d) file pointer

4. Which is the simplest method of implementing hardwired control unit?

a) State Table Method

b) Delay Element Method

c) Sequence Counter Method

d) Using Circuits

5. A set of microinstructions for a single machine instruction is called ___________

a) Program

b) Command

c) Micro program

d) Micro command

4. PROCESSOR AND CONTROL UNIT

Basic MIPS implementation

Building a Data path

A Simple Implementation Scheme

An Overview of Pipelining

Pipelined Data path and Control

Data Hazards: Forwarding versus Stalling

Control Hazards

5. Post MCQ Test

1. The situation wherein the data of operands are not available is called ______

a) Data hazard

b) Stock

c) Deadlock

d) Structural hazard

2. The stalling of the processor due to the unavailability of the instructions is called as

a) Control hazard

b) structural hazard

c) Input hazard

d) None of the mentioned

3. The time lost due to the branch instruction is often referred to as ____________

a) Latency

b) Delay

c) Branch penalty

d) None of the mentioned

4. The algorithm followed in most of the systems to perform out of order execution is

a) Tomasulo algorithm

b) Score carding

c) Reader-writer algorithm

d) None of the mentioned

5. If during the execution of an instruction an exception is raised then __________

a) The instruction is executed and the exception is handled

b) The instruction is halted and the exception is handled

c) The processor completes the execution and saves the data and then handle the

exception

d) None of the mentioned

6. _____ is/are types of exceptions.

a) Trap

b) Interrupt

c) System calls

d) All of the mentioned

Lecture notes for Memory and I/O Systems in Computer Architecture

1. Objectives:

 Learn the concept of memory hierarchy.
 Discuss the concept of memory organization.
 Explain the use of cache memory and virtual memory.
 Understand the concept of memory management hardware.

2. OUTCOMES:

 Exemplify in a better way the I/O and memory organization
 Explain the concept, interfacing and organization of of various memories and I/O

systems

3. Pre Test- MCQ type

1. The standard SRAM chips are costly as _________

a) They use highly advanced micro-electronic devices

b) They house 6 transistor per chip

c) They require specially designed PCB’s

d) None of the mentioned

2. The fastest data access is provided using _______

a) Caches

b) DRAM’s

c) SRAM’s

d) Registers

3. The last on the hierarchy scale of memory devices is ______

a) Main memory

b) Secondary memory

c) TLB

d) Flash drives

4. The reason for the implementation of the cache memory is ________

a) To increase the internal memory of the system

b) The difference in speeds of operation of the processor and memory

c) To reduce the memory access and cycle time

d) All of the mentioned

5. The effectiveness of the cache memory is based on the property of ________

a) Locality of reference

b) Memory localisation

c) Memory size

d) None of the mentioned

4. MEMORY AND I/O SYSTEMS

Memory hierarchy

Memory technologies

The Basics of Caches

Measuring and Improving Cache Performance

Virtual Memory

5. Post MCQ Test

1. The techniques which move the program blocks to or from the physical memory

is called as ______

a) Paging

b) Virtual memory organisation

c) Overlays

d) Framing

2. An interrupt breaks the execution of instructions and diverts its execution to

a) Interrupt service routine

b) Counter word register

c) Execution unit

d) control unit

3. __________ is used to implement virtual memory organisation.

a) Page table

b) Frame table

c) MMU

d) None of the mentioned

4. The main aim of virtual memory organisation is ________

a) To provide effective memory access

b) To provide better memory transfer

c) To improve the execution of the program

d) All of the mentioned

5. The virtual memory basically stores the next segment of data to be executed on

the _________

a) Secondary storage

b) Disks

c) RAM

d) ROM

Parallelism in Computer Architecture

1. Objectives :

 Learn the concepts of parallel processing, pipelining.

 Understand the architecture and functionality of central processing

unit

 Discuss about different types of peripheral devices of computer

 Learn the different types of serial communication techniques.

 Explain different pipelining processes.

2. OUTCOMES:

 Learn the concepts of parallel processing, pipelining and interprocessor

communication

 Discuss parallel processing technique and unconventional architectures

3. Pre Test- MCQ type

1. Execution of several activities at the same time.

a) Processing

b) parallel processing

c) serial processing

d) multitasking

Answer: parallel processing

2. A parallelism based on increasing processor word size.

a) Increasing

b) Count based

c) Bit based

d) Bit level

Answer: Bit level

3. The pipelining process is also called as ______

a) Superscalar operation

b) Assembly line operation

c) Von Neumann cycle

d) None of the mentioned

Answer: Assembly line operation

4. To increase the speed of memory access in pipelining, we make use of

a) Special memory locations

b) Special purpose registers

c) Cache

d) Buffers

Answer: Cache

4. Parallelism

4.1 Introduction

Why Parallel Architecture?

 Parallel computer architecture adds a new dimension in the development of

computer system by using more and more number of processors.

 In principle, performance achieved by utilizing large number of processors is

higher than the performance of a single processor at a given point of time.

Parallel Processing

 Parallel processing can be described as a class of techniques which enables the

system to achieve simultaneous data-processing tasks to increase the

computational speed of a computer system.

 A parallel processing system can carry out simultaneous data-processing to achieve

faster execution time.

 For instance, while an instruction is being processed in the ALU component of the

CPU, the next instruction can be read from memory.

 The primary purpose of parallel processing is to enhance the computer processing

capability and increase its throughput,

 A parallel processing system can be achieved by having a multiplicity of functional

units that perform identical or different operations simultaneously.

 The data can be distributed among various multiple functional units.

 The following diagram shows one possible way of separating the execution unit

into eight functional units operating in parallel.

 The operation performed in each functional unit is indicated in each block if the

diagram:

 The adder and integer multiplier performs the arithmetic operation with integer

numbers.

 The floating-point operations are separated into three circuits operating in parallel.

 The logic, shift, and increment operations can be performed concurrently on

different data.

 All units are independent of each other, so one number can be shifted while

another number is being incremented.

 Parallel computers can be roughly classified according to the level at which the

hardware supports parallelism, with multi-core and multi-processor computers

having multiple processing elements within a single machine.

 In some cases parallelism is transparent to the programmer, such as in bit-level or

instruction-level parallelism.

 But explicitly parallel algorithms, particularly those that use concurrency, are more

difficult to write than sequential ones, because concurrency introduces several

new classes of potential software bugs, of which race conditions are the most

common.

 Communication and synchronization between the different subtasks are typically

some of the greatest obstacles to getting optimal parallel program performance.

Advantages of Parallel Computing over Serial Computing are as follows:

1. It saves time and money as many resources working together will reduce the

time and cut potential costs.

2. It can be impractical to solve larger problems on Serial Computing.

3. It can take advantage of non-local resources when the local resources are finite.

4. Serial Computing ‘wastes’ the potential computing power, thus Parallel

Computing makes better work of hardware.

Types of Parallelism:

1. Bit-level parallelism: It is the form of parallel computing which is based on the

increasing processor’s size. It reduces the number of instructions that the system

must execute in order to perform a task on large-sized data.

Example: Consider a scenario where an 8-bit processor must compute the sum of

two 16-bit integers. It must first sum up the 8 lower-order bits, then add the 8

higher-order bits, thus requiring two instructions to perform the operation. A 16-

bit processor can perform the operation with just one instruction.

2. Instruction-level parallelism: A processor can only address less than one

instruction for each clock cycle phase. These instructions can be re-ordered

andGrouped which are later on executed concurrently without affecting the result of the

program. This is called instruction-level parallelism.

3. Task Parallelism: Task parallelism employs the decomposition of a task into

subtasks and then allocating each of the subtasks for execution. The processors

perform execution of sub tasks concurrently.

4. Data-level parallelism (DLP) – Instructions from a single stream operate

concurrently on several data – Limited by non-regular data manipulation

patterns and by memory bandwidth

Architectural Trends

 When multiple operations are executed in parallel, the number of cycles needed to

execute the program is reduced.

 However, resources are needed to support each of the concurrent activities.

 Resources are also needed to allocate local storage.

 The best performance is achieved by an intermediate action plan that uses

resources to utilize a degree of parallelism and a degree of locality.

 Generally, the history of computer architecture has been divided into four

generations having following basic technologies −

 Vacuum tubes

 Transistors

 Integrated circuits

 VLSI

 Till 1985, the duration was dominated by the growth in bit-level parallelism.

 4-bit microprocessors followed by 8-bit, 16-bit, and so on.

 To reduce the number of cycles needed to perform a full 32-bit operation, the

width of the data path was doubled. Later on, 64-bit operations were introduced.

 The growth in instruction-level-parallelism dominated the mid-80s to mid-90s.

 The RISC approach showed that it was simple to pipeline the steps of instruction

processing so that on an average an instruction is executed in almost every cycle.

 Growth in compiler technology has made instruction pipelines more productive.

 In mid-80s, microprocessor-based computers consisted of

 An integer processing unit

 A floating-point unit

 A cache controller

 SRAMs for the cache data

 Tag storage

 As chip capacity increased, all these components were merged into a single chip.

 Thus, a single chip consisted of separate hardware for integer arithmetic, floating

point operations, memory operations and branch operations.

 Other than pipelining individual instructions, it fetches multiple instructions at a

time and sends them in parallel to different functional units whenever possible.

This type of instruction level parallelism is called superscalar execution.

FLYNN‘S CLASSIFICATION

 Flynn's taxonomy is a specific classification of parallel computer architectures that

are based on the number of concurrent instruction (single or multiple) and data

streams (single or multiple) available in the architecture.

 The four categories in Flynn's taxonomy are the following:

1. (SISD) single instruction, single data

2. (SIMD) single instruction, multiple data

3. (MISD) multiple instruction, single data

4. (MIMD) multiple instruction, multiple data

 Instruction stream: is the sequence of instructions as executed by the machine

 Data Stream is a sequence of data including input, or partial or temporary result,

called by the instruction Stream.

 Instructions are decoded by the control unit and then ctrl unit send the

instructions to the processing units for execution. •

 Data Stream flows between the processors and memory bi directionally.

SISD

An SISD computing system is a uniprocessor machine which is capable of executing a single

instruction, operating on a single data stream.

 In SISD, machine instructions are processed in a sequential manner and computers

adopting this model are popularly called sequential computers.

 Most conventional comp

data to be processed have to be stored in primary memory.

 The speed of the processing element in the SISD model is limited (dependent) by

the rate at which the computer can transfer information internally.

ters have SISD architecture. All the instructions and

 Dominant representative SISD systems are IBM PC, workstations.

SIMD

• An SIMD system is a multiprocessor machine capable of executing the same

instruction on all the CPUs but operating on different data streams

 Machines based on an SIMD model are well suited to scientific computing since

they involve lots of vector and matrix operations.

 So that the informationCan be passed to all the processing elements (PEs)

Organized data elements of vectors can be divided into multiple sets (N-sets for N PE

systems) and each PE can process one data set.

 Dominant representative SIMD systems are Cray’s vector processing machine.

MISD

 An MISD computing system is a multiprocessor machine capable

Of executing

Different instructions on

dataset.

Different PEs but all of them operating on the same

 The system performs different operations on the same data set. Machines built

using the MISD model are not useful in most of the application, a few machines

are built, but none of them are available commercially.

MIMD

 An MIMD system is a multiprocessor machine which is capable of executing

multiple instructions on multiple data sets.

 shared-memory MIMD and

 distributed-memory MIMD

Based on the way PEs are coupled to the main memory.

In the shared memory MIMD model (tightly coupled multiprocessor systems), all the PEs are

connected to a single global memory and they all have access to it. The communication between

PEs in this model takes place through the shared memory, modification of the data stored in the

global memory by one PE is visible to all other PEs. Dominant representative shared memory

MIMD systems are Silicon Graphics machines and Sun/IBM’s SMP (Symmetric Multi-Processing).

In Distributed memory MIMD machines (loosely coupled multiprocessor systems) all PEs have a

local memory. The communication between PEs in this model takes place through the

interconnection network (the inter process communication channel, or IPC). The network

connecting PEs can be configured to tree, mesh or in accordance with the requirement.

VECTOR ARCHITECTURES

 A multithreaded CPU is not a parallel architecture, strictly speaking; multithreading

is obtained through a single CPU, but it allows a programmer to design and develop

applications as a set of programs that can virtually execute in parallel: namely,

threads.

 Multithreading is solution to avoid waiting clock cycles as the missing data is

fetched: making the CPU manage more peer-threads concurrently; if a thread gets

blocked, the CPU can execute instructions of another thread, thus keeping

functional units busy.

 Each thread must have a private Program Counter and a set of private registers,

separate from other threads.

 In a traditional scalar processor, the basic data type is an n-bit word.

 The architecture often exposes a register file of words, and the instruction set is

composed of instructions that operate on individual words.

 In a vector architecture, there is support of a vector datatype, where a vector is a

collection of VL n-bit words (VL is the vector length).

 There may also be a vector register file, which was a key innovation of the Cray

architecture.

 Previously, vector machines operated on vectors stored in main memory.

 Figures 1 and 2 illustrate the difference between vector and scalar data types, and

the operations that can be performed on them.

 Vector load/store instructions provide the ability to do strided and scatter / gather

memory accesses, which take data elements distributed throughout memory and

pack them into sequential vectors/streams placed in vector/stream registers.

 This promotes data locality.

 It results in less data pollution, since only useful data is loaded from the memory

system.

 It provides latency tolerance because there can be many simultaneous outstanding

memory accesses.

 Vector instructions such as VLD and VST provide this capability.

HARDWARE MULTITHREADING

Multithreading

• A mechanism by which the instruction streams is divided into several smaller

streams

(threads) and can be executed in parallel is called multithreading.

Hardware Multithreading

• Increasing utilization of a processor by switching to another thread when one

thread is stalled is known as hardware multithreading.

Thread

• A thread includes the program counter, the register state, and the

stack. It is a lightweight process; whereas threads commonly share a single

address space, processes don't.

Thread Switch

• The act of switching processor control from one thread to another within the

same process. It is much less costly than a processor switch.

Process

• A process includes one or more threads, the address space, and the operating

system state. Hence, a process switch usually invokes the operating system,

but not a thread switch.

Types of Multi-threading

1. Fine-grained Multithreading

2. Coarse-grained Multithreading

3. Simultaneous Multithreading

Coarse-grained Multithreading

A version of hardware multithreading that implies switching between threads only after

significant events, such as a last-level cache miss.

• This change relieves the need to have thread switching be extremely fast and

is much less likely to slow down the execution of an individual thread, since

instructions from other threads will only be issued when a thread

encounters a costly stall.

Advantage

• To have very fast thread switching.

• Doesn't slow down thread.

Disadvantage

• It is hard to overcome throughput losses from shorter stalls, due to pipeline

start -up costs.

• Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline

must be emptied.

• New thread must fill pipeline before instructions can complete.

• Due to this start-up overhead, coarse-grained multithreading is much more

useful for reducing the penalty of high-cost stalls, where pipeline refill is

negligible compared to the stall time.

Fine-grained Multithreading

• A version of hardware multithreading that implies switching between

threads after every instruction resulting in interleaved execution of multiple

threads. It switches from one thread to another at each clock cycle.

• This interleaving is often done in a round-robin fashion, skipping any threads

that are stalled at that clock cycle.

To make fine-grained multithreading practical, the processor must be able to switch

threads on every clock cycle.

Advantage

• Vertical waste is eliminated.

• Pipeline hazards cannot arise.

• Zero switching overhead

• Ability to hide latency within a thread i.e., it can hide the throughput losses

that arise from both short and long stalls.

• Instructions from other threads can be executed when one thread stalls.

• High execution efficiency

• Potentially less complex than alternative high performance processors.

Disadvantage

• Clock cycles are wasted if a thread has little operation to execute.

• Needs a lot of threads to execute.

• It is expensive than coarse-grained multithreading.

• It slows down the execution of the individual threads, since a thread that is

ready to execute without stalls will be delayed by instructions from other

threads.

Simultaneous multithreading (SMT)

• It is a variation on hardware multithreading that uses the resources of a

multiple-issue, dynamically scheduled pipelined processor to exploit thread-

level parallelism at the same time it exploits instruction level parallelism.

• The key insight that motivates SMT is that multiple-issue processors often

have more functional unit parallelism available than most single threads can

effectively use.

Since SMT relies on the existing dynamic mechanisms, it does not switch resources every

cycle.

• Instead, SMT is always executing instructions from multiple threads, to

associate instruction slots and renamed registers with their proper threads.

Advantage

• It is ability to boost utilization by dynamically scheduling units

among multiple threads.

• It increases hardware design facility.

functional

• It produces better performance and add resources to a fine grained manner.
Disadvantage

It cannot improve performance if any of the shared resources are the limiting

bottlenecks for the performance.

MULTICORE AND OTHER SHARED MEMORY MULTIPROCESSORS

Multiprocessor: A computer system with at least two processors

• Multicore: More than one processor available within a single chip.

The conventional multiprocessor system used is commonly referred as shared memory

multiprocessor system.

• Shared Memory Multiprocessor (SMP) is one
 that

Offers the

Programmer a single is

nearly always the

Physical address space across all processors which case for

multicore chips.

• Processors communicate through s h a r e d variables in memory, with all

processors capable of accessing any memory location via loads and stores.

• Systems can still run independent jobs in their own virtual address spaces,

even if they all share a physical address space.

• Use of shared data must be coordinated via synchronization primitives

(locks) that allow access to data to only one processor at a time

Shared Memory Multiprocessor System.[Tightly coupled processor]

• The conventional multiprocessor system used is commonly referred as

shared memory multiprocessor system.

• Single address space shared by all processors. Because every processor

communicates through a shared global memory.

• For high speed real time processing, these systems are preferable as

their throughput is high as compared to loosely coupled systems

• In tightly coupled system organization, multiple processors share a

global main memory, which may have many modules.

• Tightly coupled systems use a common bus, crossbar, or multistage

network to connect processors, peripherals, and memories.

 Two common styles of implementing Shared Memory Multiprocessors (SMP) are,

Uniform memory access (UMA) multiprocessors

• In this model, Main memory is uniformly shared by all

Processors in multiprocessor systems and each processor

access time to shared memory.

has equal

• This model is used for time-sharing applications in a multi user environment

• Tightly-coupled systems (high degree of resource sharing) suitable for general

purpose and time-sharing applications by multiple users

Physical memory uniformly shared by all processors, with equal access time to all

words.

• Processors may have

fashion.

ocal cache memories. Peripherals also shared in some

• UMA architecture models are of two 20types,

Symmetric:

• All processors have equal access to all peripheral

devices.

Asymmetric:

All processors are identical.

• One processor (master) executes the operating system other

processors may be of different types and may be dedicated

to special tasks.

Non Uniform Memory Access (NUMA) multiprocessors

• In shared memory multiprocessor systems, local memories can be connected

with every processor. The collections of all local memories form the global

memory being shared.

• In this way, global memory is distributed to all the processors. In this case, the

access to a local memory is uniform for its corresponding processor as it is

attached to the local memory.

• But if one reference is to the local memory of some other remote processor,

then the access is not uniform.

• It depends on the location of the memory. Thus, all memory words are not

accessed uniformly. All local memories form a global address space accessible

by all processors

• Programming NUMAs are harder but NUMAs can scale to larger sizes and have

lower latency to local memory

• Memory is common to all the processors. Processors easily communicate by

means of shared variables.

• These systems differ in how the memory and peripheral resources are

shared or distributed

• The access time varies with the location of the memory word.

Distributed Memory (NUMA)

• Cache Only Memory Architecture. The COMA model is a special case of the

NUMA

Here all the distributed memories are converted to cache memories.

• The local memories for the processor at each node are used as cache

instead of actual

Distributed Memory [Loosely Coupled Systems]

• These systems do not share the global memory because shared memory

concept gives rise to the problem of memory conflicts, which in turn slows

down the execution of instructions.

• Therefore, to alleviate this problem, each processor in loosely coupled

systems is having a large local memory (LM), which is not shared by any

other processor.

• Thus, such systems have multiple processors with their own local

memory and a set of I/O devices.

• This set of processor, memory and I/O devices makes a computer system.

 Therefore, these systems are also called multi-computer systems.

 These computer systems are connected together via message passing

interconnection network through which processes communicate by passing

messages to one another.

Since every computer system or node in multicomputer systems has a separate

memory, they are called distributed multicomputer systems. These are also

called loosely coupled systems.

GPU (Graphics Processing Unit)

 A graphics processing unit (GPU) is a computer chip that performs rapid

mathematical calculations, primarily for the purpose of rendering images.

 In the early days of computing, the central processing unit (CPU) performed these

calculations.

 As more graphics-intensive applications such as AutoCAD were developed,

however, their demands put strain on the CPU and degraded performance.

 GPUs came about as a way to offload those tasks from CPUs and free up processing

power.

 Today, graphics chips are being adapted to share the work of CPUs and train deep

neural networks for AI applications.

 A GPU may be found integrated with a CPU on the same circuit, on a graphics card

or in the motherboard of a personal computer or server.

 NVIDIA, AMD, Intel and ARM are some of the major players in the GPU market.

GPU vs. CPU

 A GPU is able to render images more quickly than a CPU because of its parallel

processing architecture, which allows it to perform multiple calculations at the

same time.

 A single CPU does not have this capability, although multicore processors can

perform calculations in parallel by combining more than one CPU onto the same

chip.

 In general, a GPU is designed for data-parallelism and applying the same operation

to multiple data-items (SIMD).

 Most CPUs have between four and eight cores, though some have up to 32 cores.

 Each core can process its own tasks, or threads.

 GPU computing is the use of a GPU (graphics processing unit) as a co- processor

to accelerate CPUs for general-purpose scientific and engineering computing.

 The GPU accelerates applications running on the CPU by offloading some of the

compute-intensive and time consuming portions of the code.

 The rest of the application still runs on the CPU. From a user's perspective, the

application runs faster because it's using the massively parallel processing

power of the GPU to boost performance. This is known as "heterogeneous" or

"hybrid" computing.

 A CPU consists of four to eight CPU cores, while the GPU consists of hundreds of

smaller cores.

 Together, they operate to crunch through the data in the application.

 This massively parallel architecture is what gives the GPU its high compute

performance.

 There are a number of GPU-accelerated applications that provide an easy way

to access high-performance computing (HPC).

CLUSTER SYSTEM

 Clustered systems are similar to parallel systems as they both have multiple CPUs.

 However a major difference is that clustered systems are created by two or more

individual computer systems merged together.

 Basically, they have independent computer systems with a common storage and

the systems work together.

The clustered systems are a combination of hardware clusters and software clusters. The hardware

clusters help in sharing of high performance disks between the systems. The software clusters

makes all the systems work together.

Each node in the clustered systems contains the cluster software. This software monitors the

cluster system and makes sure it is working as required. If any one of the nodes in the clustered

system fail, then the rest of the nodes take control of its storage and resources and try to restart.

Types of Clustered Systems

• High performance Cluster

– 1000 nodes, high level parallel process

• Load Balancing Cluster

– Balance the work loads

• Web service Cluster

– Web pages & applications

• Storage Cluster

– Parallel file systems

• Database Cluster

– Oracle parallel server

WSC

 Warehouse-scale computers (WSCs) form the foundation of internet services that

people use for search, social networking, online maps, video sharing, online

shopping, email, cloud computing, etc.

 The ever increasing popularity of internet services has necessitated the creation of

WSCs in order to keep up with the growing demands of the public.

 Although WSCs may seem to be large datacenters, their architecture and operation

are different from datacenters.

 The WSC is a descendant of the supercomputer. Today’s WSCs act as one giant

machine.

 The main parts of a WSC are the building with the electrical and cooling

infrastructure, the networking equipment and the servers, about 50000 to 100000

of them.

 The costs are of the order of $150M to build such an infrastructure. WSCs have

many orders of magnitude more users than high performance computing and play

a very important role today.

Message Passing Multiprocessor

Communicating between multiple processors by explicitly sending and receiving information.

 Send message routine: A routine used by a processor in machines with private

memories to pass a message to another processor.

• Receive message routine: A routine used by a processor in machines with

private memories to accept a message from another processor.

• Distributed memory multicomputer system consists of multiple computers, known as

nodes, inter-connected by message passing network.

• Each node acts as an autonomous computer having a processor, a local memory and

sometimes I/O devices.

• In this case, all local memories are private and are accessible only to the local

processors.

• This is why, the traditional machines are called no-remote-memory-access (NORMA)

machines.

6. Post MCQ Test

6. Which of the following processor has a fixed length of instructions?

a) CISC

b) RISC

c) EPIC

d) Multi-core

7. Which one is not benefit of multiprocessors?

a) Multiple independent jobs can be made to operate in parallel

b) A single job can be partitioned into multiple parallel tasks

c) Multiple jobs can be made to operate in serial

c) All are benefits

8. MISD data stream is the abbreviation of

a)Multiple instruction single data stream

b) Multiple instruction streams, single data stream

c) Multiple instruction streams, data stream

d) Many instruction streams, single data stream

9. Data-level parallelism/task-level parallelism in a tightly coupled hardware which

allows interaction among parallel threads, are processed by

a) instruction-Level Parallelism

b) Request-Level Parallelism

c) Thread-Level Parallelism

d) Vector Architectures and Graphic Processor Units

10. An alternative towards the fine-grained multithreading, the devised technique was

a) Buffer-grained multi-threading

b) Miss-grained multi-threading

c) Coarse-grained multi-threading

d) Coarse-grained single threading

7.Reference:

1. Miles J. Murdocca and Vincent P. Heuring, ―Computer Architecture and Organization: An
Integrated approach‖, Second edition, Wiley India Pvt Ltd, 2015.

2. William Stallings, “Computer Organization and Architecture – Designing for Performance”, Eighth
Edition, Pearson Education, 2010

 3. John P. Hayes, Computer Architecture and Organizat

